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Abstract: In this paper, a new approach to Fault Detection and Diagnosis
that is based on Correspondence Analysis is proposed. Correspondence analysis
is a powerful multivariate technique based on the generalized singular value
decomposition. The advantage of using correspondence analysis is that it depicts
rows as well as columns as points in the dual lower dimensional vector space.
Correspondence analysis has been shown to capture association between various
features and events quite exoectively. In this paper, the correspondence analysis
approach is used for Fault Detection and Diagnosis (FDD) and is validated on
representative process systems. Copyright c 2005 IFAC
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1. INTRODUCTION

Online process monitoring for fault detection and
diagnosis (FDD) is very important for ensuring
plant safety and maintaining product quality. The
area of FDD has therefore been very active in re-
cent years. Both, model based and process history
based methods have been proposed (Kresta et al.
1991, Chiang et al. 2000, Venkat et al. 2003) with
a fair amount of success.

In a typical process plant, hundreds of variables
are measured every few seconds. These measure-
ments bring in useful signatures about the nor-
malcy or otherwise of plant operation. While
model based methods can be used to detect
and isolate signals indicating abnormal operation,
such quantitative cause-exoect models may be dif-
�cult to develop. Historical data based methods
attempt to extract maximum information out of

such datasets with minimal physical knowledge
of plant. Because of high dimensionality and cor-
relation amongst variables, multivariate statisti-
cal tools, which take correlation amongst vari-
ables into account, are better suited for this task.
Principal components analysis (PCA) is one of
the most popular multivariate statistical methods
used for process monitoring and data compression.
PCA computes new orthogonal principal direc-
tions which are linear combination of the actual
variables. This is done by singular value decom-
position of a suitably scaled data matrix (X) and
retaining those principal components that have
signi�cant singular values. PCA has been used for
fault detection using statistical control limits Q
(Squared Prediction Error) and/ or T 2 statistics
(Goulding et al. 2000). Once a fault is detected
using either Q or T 2 statistics, contributions plot
have been used for fault isolation.



The main limitation of PCA is that it assumes
normality and independence of the data (Luo et
al. 1999). In most process plants, because of the
dynamic nature of the process, these conditions
are very di¢ cult to meet. Other drawbacks of
PCA are that (i) it is scale dependent and (ii)
it can not handle dynamic data in its traditional
form. To overcome these shortcomings of PCA,
many variants of PCA have been proposed in the
literature (Ku et al. 1995, Bakshi 1998). Also,
PCA tries to achieve data compression only across
the column space and rows are assumed to be
statistically independent. In this paper, we pro-
pose the use of Correspondence Analysis for the
task of FDI. Correspondence analysis is a pow-
erful multivariate statistical tool, which is also
based on generalized singular value decomposi-
tion. Correspondence analysis is a dual analysis,
as it displays column as well as row points in
the dual lower dimensional space. Due to its ca-
pability to compress as well as classify the data
set, correspondence analysis has been extensively
used in ecological problems, study of vegetation
habit of species and social networks, etc. Here
we discuss how correspondence analysis can be
used to classify process data for fault detection
as well as isolation simultaneously. The approach
is explained through two case studies, viz (i) sim-
ulation of a CSTR for solution copolymerization
of methyl-methacrylate (MMA) and vinyl acetate
(VA), developed by Congalidis et al. (1986) &
(ii) Simulation and experimental validation on
a quadruple-tank process operating under closed
loop.

In the following section, some basic terms used in
correspondence analysis are explained. We then
present a brief introduction to correspondence
analysis followed by how it can be used for sta-
tistical process monitoring, fault detection and
isolation. Finally the application of this method
on the CSTR and the quadruple tank process is
discussed along with results.

2. BRIEF PRELIMINARIES

2.1 Weighted Euclidean Space

Correspondence analysis is based on Euclidean
distance between points in the weighted Euclidean
space. In general, the multidimensional weighted
Euclidean space is de�ned by the scalar product
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where, q1; q2 ::: qj are positive real numbers
de�ning the relative weights assigned to the J
respective dimensions. The squared distance be-
tween two points x and y in this space is thus

the weighted sum of squared di¤erences in co-
ordinates
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This type of distance function is often referred to
as a diagonal metric. One of the most common
examples of a weighted Euclidean distance is the
chi-square (�2) statistic.

2.2 Assigning masses to vectors

Di¤erent observations are often assigned weights
in many statistical methods. In the context of a
set of observations, assigning of di¤erent masses to
the vectors amounts to attaching di¤erent degrees
of importance to the positions of the points in
space. The centroid of points x1; x2; :::; xI with
di¤erent masses w1; w2; :::; wI is the weighted av-
erage point.
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Hence, x also tends towards the direction of the
points with higher mass. Inertia of a point xi can
be expressed as weighted average

in(xi) =
X
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2
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where di is the squared distance between xi and
x.

3. CORRESPONDENCE ANALYSIS

Correspondence analysis takes a single block data
Xm�n. Each row of matrix X is considered to be
a point in an n�dimensional space and similarly
each column is a point in the m�dimensional
space. The objective of correspondence analysis is
to identify the subspaces of lower dimensionality
which best contain the set of points. Thus, in
correspondence analysis we try to �nd a sub-space
which comes closest to the set of points. If we
look at other SVD based multivariate statistical
methods, the objective is always to �nd lower
dimensional subspace which "best" contains set of
points. The de�nition of this optimal subspace, i.e.
objective function for optimization, changes from
method to method. In PCA, the objective is to
maximize the variance explained in the X block.
In correspondence analysis however, the objective
function is based on the weighted distance be-
tween a point and a given subspace. The optimal
subspace is de�ned as the subspace with minimum
weighted average distance from the set of points.
The measure of closeness is based on the squared
distances rather than the distances themselves.
This can be viewed as taking measure of the sum



of squared errors instead of the absolute errors.
Like other methods, such as Fisher Discriminant
Analysis (FDA) (Chiang et al. 2000), which are
considered more appropriate than PCA for fault
diagnosis, it can be shown that correspondence
analysis is also more suited for associating faults
and dynamic correlations in the data, when com-
pared with PCA.

In correspondence analysis �rst, the correspon-
dence matrix P is constructed as the matrix of
elements of X divided by the grand total of X.

P , 1

g
X (5)

where, g = 1TX1 is grand total of elements of
X. Similarly, row and column sums of P are,
r = P1 and c = PT1. In the above expression
the symbol 1 denotes a vector of appropriate
dimension, which has all the elements as 1.

The matrices of row pro�les (R) and column
pro�les (C) of P are de�ned as the vectors of
rows and columns of P divided by their respective
sums.

R,D�1
r P

C ,D�1
c PT (6)

where, Dr = diag(r) and Dc = diag(c). It can be
easily shown that r and c would now denote the
column and row centroid respectively. The row
and column pro�les de�ne two clouds of points
in respective n� and m�dimensional weighted
Euclidean space.

Let generalized SVD of P � rcT be written
(Greenacre, 1984) as,

P � rcT = AD�BT (7)

where, ATD�1
r A = BTD�1

c B = I and D� is the
diagonal matrix consisting of generalized singular
vaules �i in descending order. Then A and B
de�ne the principal axes of the column and row
clouds respectively.

The respective co-ordinates of the row and column
pro�les with respect to their own principal axes
are related to the principal axes of the other clouds
of pro�les by simple rescaling.

The principal co-ordinates of row pro�les can be
written as,

F =
�
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�
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and likewise, the principal co-ordinates of column
pro�les can be written as,

G =
�
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�
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Thus, if the principal co-ordinates of row pro�les
is computed, the principal co-ordinates of column
pro�les can be derived without any further com-
putations on column pro�les. F and G can also be
computed as eigen vector matrices of the matrices
RC and CR respectively.

3.1 Interpretation and analysis of results

Once the new principal co-ordinates (F and G)
are computed, the next step is to interpret and
analyze the results that are generated from corre-
spondence analysis. Some metrics and their inter-
pretation can be described as follows.

Singular values and inertia: The sum of the
squared singular values gives the total inertia of
the cloud. The inertia explained by each principal
co-ordinate can then be computed by

In(ith co� ordinate) = �2iP
j �

2
j

(10)

where, j = 1:::n. Similarly, cumulative inertia
explained up to the ith principal co-ordinate is
the sum of inertias explained up to that principal
co-ordinate.

Number of principal co-ordinates to be retained:
There is no �xed criterion to determine how
many principal co-ordinates should be retained.
Although mathematical criterion do exist for se-
lecting number of principal co-ordinate, for better
graphical interpretation of results it is generally
limited to 2 or at the most 3. In most practical
applications, the �rst two principal co-ordinates
explain more than 80% of total inertia.

Row and column scores: The row and column
scores are the new coordinates of each row and
column pro�le points on the principal co-ordinates
retained.

Absolute contribution by points: This is the met-
ric that indicates the points that have con-
tributed most in ordination to each of principal
co-ordinates.

Relative contribution of each axes: This metric
measures how well a particular row or column pro-
�le point is represented by a particular principal
co-ordinate.

3.2 Interpretation from graphical results

The most important part in correspondence analy-
sis is graphical representation of the row and



column pro�le points in the dual lower dimen-
sional space. In most cases the �rst two principal
co-ordinates are plotted against each other and
sometimes, one could consider up to the �rst three
principal co-ordinates. The two dimensional plane
thus created, can be used to plot the row pro�le
points and/ or column pro�le points on a single
�gure. This plot can be used for analysis and
interpretation. If the points from the same cloud
are close to each other, they can be considered to
have similar pro�le. In order to analyze points in
di¤erent clouds, the angle between the points is
used and not the distance. If the angle between
two points in di¤erent clouds is acute, then the
two are correlated. If the angle is obtuse, the two
are correlated but negatively and if the angle is
right angle, the points do not interact, or there is
no association between the points.

4. APPLICATION OF CORRESPONDENCE
ANALYSIS TO FAULT DETECTION

Correspondence analysis can be used for statisti-
cal process monitoring as well as fault detection
and isolation. In statistical process monitoring,
correlation amongst variables is taken into ac-
count and statistical limits are drawn for normal
operating regions. If the correlation structure is
broken, these statistical limits are violated and
can be indicative of a fault. Once the fault is
detected, the next step is fault isolation. Fault
isolation is basically a classi�cation problem and
depending on the input-output data, one would
be able to classify what would be the root cause.

Correspondence analysis is carried out in dual,
i.e. on row as well as on column pro�les. This
can be used to advantage for performing both
fault detection and isolation simultaneously. For
process monitoring using correspondence analysis,
the data matrix X is formed such that each
column constitutes an input/ output variable and
each row constitutes time sample measurement
of these variables. Each row pro�le then can be
indicative of operating condition of plant. Column
pro�les on the other hand give information about
how variables are related to a particular operating
point.

4.1 Data collection

In all statistical process monitoring techniques,
data collection is the most important aspect. The
information extracted from any analysis depends
on how good or rich the data is in terms of signif-
icant events of interest. The proposed correspon-
dence analysis method also rely on the historical
data available. The results obtained using this
method, can also be used to isolate di¤erent region
of operations e.g. normal operation and di¤erent
fault scenarios.

4.2 Model Building

Once the data is collected in matrix X, the next
step is to compute the correspondence matrix P .
Having generated the correspondence matrix P
from the data matrix X, further calculations of
principal co-ordinates are straight forward (Equa-
tion 7, 8, 9). For the applications considered here,
we retain the �rst two principal components for
better understanding and insight through graph-
ical display. Analyzing the results without the
help of graphical display is also possible using
quantitative metrics discussed earlier.

4.3 Online implementation

The key issue here is implementing this method
online, under the regular plant operation. For on-
line process monitoring, the new measurement has
to be projected onto the lower dimension space
obtained via the correspondence analysis. Since,
the number of variables (number of columns) be-
ing measured do not change during the plant
operation, the column cloud remains unaltered.
The new measurement should be scaled by its sum
to give the new row pro�le point xnew. Its lower
dimensional approximation can then be obtained
from the following equation.

Fnew (j) =
1

�j

nX
i=1

xnew (i)G (i; j) (11)

where, j = 1; 2 assuming that �rst two principal
axes are retained.

5. CASE STUDIES

For validation of above methodology, we have
carried out two case studies. We �rst present
simulation as well as experimental results on the
quadruple tank setup followed by the case study
involving copolymerization reactor.

5.1 The Quadruple tank setup

The Quadruple tank process is a multivariable
laboratory process with an adjustable zero (Jo-
hansson, 2000). Simulations were carried out us-
ing the �rst principles model deployed in closed
loop using multi-loop PI-controllers. The data was
collected for normal operating condition as well
as biases in each of the sensors. The data matrix
formed contained two inputs and two outputs as
column pro�le points. Representative points for
normal and sensor biases were taken as row pro�le
points.

Figure 1 shows the result obtained from corre-
spondence analysis method. As can be seen in
�gure, the column pro�le points for the inputs,
namely U1, U2 are far away from each other as
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Fig. 1. Correspondence analysis result on Quadru-
ple tank process simulation
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Fig. 2. Online implementation of proposed
method on Quadruple tank proces ssimula-
tion

well as Y1 and Y2. This indicates that the column
pro�les for the inputs are quite dissimilar where
as column pro�les for outputs are almost simi-
lar. This is because in close loop condition, the
variability of outputs is transformed into the vari-
ability in inputs. The row pro�le points show that
process deviates in di¤erent direction for faults
in di¤erent sensors. For this particular example,
retaining only �rst two principle co-ordinates gave
full representation of the inertia of the pro�le
points. Absolute contribution to �rst principal
axes is mainly through input column pro�les and
to that of second principal axes is through output
column pro�les. This can also be observed from
Figure 1. Figure 2 shows the online implementa-
tion of the proposed method. The new row pro�le
points lie in the vicinity of normal operating point.
When a bias in sensor 2 was introduced, the row
pro�le points can be seen to deviate from normal
operating point towards "Bias in Y2" cloud.
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Fig. 3. Correspondence analysis result on Quadru-
ple tank Experimental setup
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Fig. 4. Online implementation of proposed
method on Quadruple tank Experimental
setup

To validate the proposed method, we also carried
out experimentation on the quadruple tank setup
housed in the Process Automation Lab at the
Department of Chemical Engineering, Indian In-
stitute of Technology, Bombay. Similar results as
obtained from the simulations were also observed
from the experimental results. Figure 3 and 4
respectively show the results obtained from corre-
spondence analysis and its online implementation
on the experimental setup. It can be seen that sen-
sor bias in the output Y1 get quickly classi�ed into
the "Bias in Y1" cloud and hence gets isolated.

5.2 Copolymerization Reactor simulation

A 4 � 5 transfer function matrix model for
a CSTR used for solution copolymerization of
methyl-methacrylate (MMA) and vinyl acetate
(VA) (Congalidis et al., 1986) was simulated under
closed loop condition. The pairing of controllers
was chosen based on RGA analysis, resulting in
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Fig. 5. Correspondence analysis result for CSTR
simulation case study
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Fig. 6. Online implementation of proposed
method for Fault Detection and Isolation

e¤ectively a 4� 4 system. The data was collected
for simulations of normal operating condition and
bias in all sensors.

The data matrix formed contained four inputs
and four outputs as columns pro�le points. From
the simulations, representative points for normal
operating condition and di¤erent fault scenarios
are taken as row pro�le points. Figure 5 shows the
results obtained from correspondence analysis. In
this case also, column pro�les of outputs are simi-
lar, whereas column pro�les for inputs are entirely
di¤erent for each variable. The row pro�les shows
how the normal operating point is placed relative
to the points depicting sensor biases. As can be
seen from �gure 5, points corresponding to bias
in Y1 and bias in Y3 are very close to each other.
Hence, isolation of these faults would be expected
to be di¢ cult under dynamic conditions. Figure
6 shows results obtained from online implementa-
tion of proposed method. When a bias in sensor
2 was introduced, it can be seen that the row
pro�le points started drifting towards "Bias in Y2"
points.

6. CONCLUSION

A new method based on correspondence analysis
is proposed for FDI. The ability of correspondence
analysis to depict the row pro�le points and col-
umn pro�le points in the dual lower dimensional
space can be readily used for FDI. A method
has also been proposed for online implementation
of this method. The method has been validated
through simulations and experimental setup.
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