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Abstract: This paper deals with the use of trigonometric splines (also call
Schoenberg’s polynomials) in order to increasing the performances of a nonlinear
closed-loop system. In the first part, it is recalled that for linear systems, the
couple ”setting time/overshoot” can be largely improved if a path planning is
used instead of a classical step input. The concept of trigonometric splines is
then introduced. The remainder of this paper treats of nonlinear systems and in
particular differentially flat system. After having pointed out the necessity for this
kind of system to have a smooth trajectory generator, it is shown, in particular
through the example of the crane, the contribution that this technique can bring.
A comparison with a classical polynomials approach is performed.
Copyright c© 2005 IFAC.
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1. INTRODUCTION

The usual way to evaluate the dynamical behavior
of a system (and specially in the case of linear
system) is to analyze the response to a step. More-
over, if the system is in a closed loop control, it
allows to verify that the designed control corre-
sponds to what was expected. However, it is well-
known, because of the discontinuity on its first
time derivative, that this very simple trajectory is
not always adapted to perform the best output.

In the case of non linear control (such as flat con-
trol law) this discontinuity can be incompatible
with the control law itself because this kind of
control imposes to use the successive derivatives of
the input. Another problem is due to the fact that
a step input is very demanding for the dynam-
ics of the system because this special trajectory
does not take into account the transient modes.

Consequently, typical non linear phenomena like
saturation on the control variable can appear.

The unique solution to resolve these problems
consists in using a path planning generator. This
generator calculates (in-line or off-line) a desired
trajectory by taking into account imposed points
with their associated time and eventually their
successive derivatives.

Such techniques are usual in robotics because the
Cartesian coordinates of the effective point of
a robot cannot be directly imposed. Indeed, for
a desired effective point to be reached, all the
evolutions of the variable links have to be calcu-
lated. So, the number of paper dealing with this
subject is extremely important, see for example
(Craig, 1989).

In non linear control, some actual works propose
a feedback on the trajectory planning called ref-



erence governor. The main idea of these works
(Gilbert and Kolmanovsky, 2002) is to update
the desired trajectory with respect to the actual
position and to the final one. The paper (Mahout
and Lopez, 1992) refers to work in the same spirit.
For these different approaches the main idea is
always the same : update the reference trajectory
with respect to the effective output with the aim
to take into account indirectly the dynamics of
the plant to perform the best possible trajectory
tracking.

In this paper, we consider path planning in the
context of a non linear control. In the case of
flat control design for which it is necessary to
have smooth imposed trajectories, it will be shown
that the use of trigonometric splines (also call
Schoenberg’s polynomials) can be a very inter-
esting alternative to resolve the problem of path
planning.

This paper is organized as follows. In a first part
the linear case will be exposed as an example. It
will be shown the influence of the input reference
on the quality of the output in term of setting
time and overshoot. The second part will concern
the Schoenberg polynomials and the techniques
associated to calculate the different coefficients of
these polynomials. The third part will be about
flat control and the usual way to impose smooth
trajectories. In the last part the classical example
of the crane will be presented where the use of
trigonometric splines improves the output perfor-
mances. A comparison with a classical polynomi-
als approach is proposed

2. THE LINEAR CASE

In this section, before exposing the trigonometric
splines technic, some well-known results about lin-
ear systems are recalled. This presentation shows
that a path generator has a very important influ-
ence on the quality of the response of the system.

Let be the controlled linear system G(s) = k
s2+s

obviously stable in closed loop. For testing in
simulation this system, two kinds of input refer-
ence Yc are considered. The first one is the step
(Yc(t) = 1, ∀t > 0) and the second is issued
to a path generator (Yc(t) = f(t), such that
f(0) = 0 et f(T ) = 1). In these simulations,
the path planning corresponds to a trigonometric
spline (explained is the next part), but any other
smooth function would have given similar results).
In both cases, different simulations are performed
with, for each one, a different value for the gain k.
For each simulation, the setting time at 2% and
the overshoot are measured. It can be noted that
the overshoot is calculated on the error tracking
Y c(t)−Y (t) and not on the difference between the

output and the expected final value Y c = 1, which
is less favorable. In figure 1, the representation of
the evolution of these two characteristic measure-
ments is shown (setting time and overshoot) when
k varies. These two plots present discontinuities
which are due to the oscillations of the responses.
Indeed when an oscillation becomes small enough
to stay inside the band of 2% around the final
value, therefor k increases,, the corresponding set-
ting time is improved with value equal to the oscil-
lation period. This abrupt variation involves the
observed discontinuities. It can be observed that
for a small gain (k < 10) the use of trigonometric
spline is not interesting. Indeed, if the overshoot is
globally the same, the setting time is not as good
(for example at k = 5 the overshoot is 48% for the
step and 44% for the trigonometric spline whereas
the setting time increases from 7.6 seconds to 8
seconds). When k becomes bigger an important
observation can be made : the response to the
step input presents an overshoot of 100% and a
setting time near of 7.8 seconds while the response
to the trigonometric spline input converges to the
point corresponding to no overshoot and a setting
time near 1 second. For the response to the step
input, when k > 0.25, there exists two conjugate
complex values λ1,2. So, the point of convergence
can be found from the expression of the output:

y(t) =
1

ω2
n

+
1

ωn ∗ ωp

e−ξωnt sin(ωpt + φ) (1)

where ωp = ωn

√

(1 − ξ2), ωn = ‖λ‖, φ = arg(λ)
and ξ = cos(φ).

It can easily be demonstrated that, when k → ∞
the maximum of the output y(t) tends to 2 and the
setting time is reached at T such that e−ξωnT =

0.02, so T = − ln(0.02
ℜe(λ) = 7.824

In the case of the trigonometric spline input, an
analytic expression of the output cannot be ex-
pressed. It is however possible to note that, when
k increases, the setting time converges to 1 second.
This value for these simulations corresponds to
the final time of establishment of the trigonomet-
ric spline. It can be observed that for the over-
shoot, after having increased until approximately
50%, it decreases by important values of k to reach
0 finally.

In conclusion we can note that, in the linear case,
without changing anything in the given propor-
tional control law, it is possible to increase notably
the performance by using a path generator.

3. THE TRIGONOMETRIC SPLINES

The term spline is usual for polynomial of a time
variable τ . In the case of trigonometric splines the
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Fig. 1. The (setting time/overshoot) plane. Each
point corresponds to a different value of k
varying from 0.25 to 1000

time variable is not directly used but indirectly
used by the way of the trigonometric functions sin

and cos (Schoenberg, 1964; Simon and C., 1993).

Definition 1. A m-order trigonometric spline y (τ)
satisfying the 2m constraints yi (i = 1, 2, · · · , 2m)
is represented uniquely by :

y (τ) =
a0 +

m−1
∑

k=1

(ak cos (kτ) + bk sin (kτ))

+am sin (m (τ − γ))

(2)

where γ guarantees the uniqueness of the solution
and is calculated generally as :

γ =

2m

1

2m

∑

τk

k=1

with τi corresponding to the values of τ where
each of the 2m constraints are applied.

Remark 2. The trigonometric spline are 2π peri-
odic and τ must belong to the interval [0, 2π]

Suppose n points (y1, y2, · · · , yn) where y1 defines
the initial point at time τ1 and yn defines the
final point at time τn. The n − 2 other points are
auxiliary points defined at time (τ2, · · · , τn−1).

The order of the trigonometric spline (2) which
can take into account the n above constraints
must be at least equal to m = E

(

n+1
2

)

, where
E (x) denote the integer part of x. The deter-
mination of the 2m coefficients results from the
resolution of a linear system of n equations.

For path planning the constraints are not always
given by a set of a simple couple (time, points)
but the successive time derivatives can also be
associated with this set. In such case the 2m

coefficients are issued from the extended linear
system:























































































y (τ) = a0 +

m−1
∑

k=1

(ak cos (kτ) + bk sin (kτ))

+am sin (m (τ − γ))

.
y (τ) =

m=1
∑

k=1

− k (ak sin (kτ) + bk cos (kτ))

+m.am cos (m (τ − γ))
...

y(β) (τ) =

m−1
∑

k=1

kβ

(

ak

∂β cos (kτ)

∂τβ
+ bk

∂β sin (kτ)

∂τβ

)

+mβam

∂β cos (m (τ − γ))

∂τβ

(3)

Equations (3) always includes 2m parameters.
So, if each point yi is determined at time τi

with β successive derivatives there are n (β + 1)
equations. In this case, a m-order trigonometric

spline can interpolated E
(

2m
β+1

)

points.

3.1 Time rescalling

Obviously, in a control problem, it is not realistic,
if we respect remark 2, to restrict the time be-
tween 0 and 2π. The time has also to be rescaled.
Suppose that a desired trajectory is defined in the
time domain [ti, tf ] where ti is the initial time and
tf the final time. It is always possible to impose
the change of a variable:

τ =
(t − ti) ∗ α

(tf − ti)
(4)

where α is a scalar belonging to [0, 2π].

In the new time coordinate, the initial time is
equal to zero and the final time is equal to α.
The determination of the different coefficients
a0, ak, bk, am for the trigonometric spline (2) can
be realised after having transformed the different
time constraints with the linear transformation
(4). It must be noted that as the successive
derivatives ẏ,ÿ,..,y(β) are known with respect to
the time t, the determination of their values with
respect to the new reference time τ introduces
a scaling factor depending on the order of the
derivative :



























ẏ (τ) = ẏ (t).

(

α

tf − ti

)

...

y(β) (τ) = y(β) (t) .

(

α

tf − ti

)β

(5)



4. FLAT CONTROL

4.1 Short overview

Flat control is a quite recent control theory. It
has been developed by M. Fliess, J. Lévine, Ph.
Martin and P. Rouchon in 1992.(Fliess et al.,
1992) Consider a non linear model given by:

ẋ = f(x,u) (6)

with state and control vectors defined as x =
[

x1 · · · xn

]T
∈ R

n and u =
[

u1 · · · um

]T
∈

R
m. System (6) is called a differential flat system

if, and only if, there exists a system output y ∈
R

m such that:
{

x = A(y, ẏ, ÿ, · · · ,y(α))

u = B(y, ẏ, ÿ, · · · ,y(α+1))
(7)

with y of the form:

y = h(x,u, u̇, ü, · · · ,u(δ)) (8)

The y output is called a flat output of system
(6), being necessary to have the same number of
outputs than inputs (that is y ∈ R

m). It has been
shown that having found a flat output, the control
is defined by

u(t) = B(y, ẏ, ÿ, · · · ,v) (9)

linearizes the system (6) between the flat output
y and a auxiliary input v in the Brunovsky form :

y
(αj+1)
j = vj j = 1, . . . ,dim(u) (10)

Path planning and trajectory tracking can also be
implemented, since for a desired flat output yd(t)
the asymptotic tracking of this trajectory can be
achieved by a classical feedback on v

vj = y
(αj+1)
d,j +

αj
∑

k=1

σk
j

(

y
(k)
j − y

(k)
d,j

)

j = 1, . . . ,dim(u)

(11)
Where σk

j denote the coefficients of a Hurwtiz
polynomial which ensures the desired tracking
dynamics.

4.2 The problem of trajectory tracking

Equation (11) shows that flat control needs, for
each flat output, to use a well-defined trajectory
(

yd, ẏd, ÿd, · · · , y
(α+1)
d

)

. Indeed, if the trajectory

is not completely defined (i.e the function is not
smooth enough and the successive derivatives are
null) then the most interesting characteristic of
the flat control, which consists in taking into ac-
count the dynamics of the plant, is not correctly
exploited. Generally (Levine, 2004) polynomial
splines are used to describe a desired path plan-
ning. If only a point-to-point path is used to define
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Fig. 2. The crane

the path a well-defined trajectory must verify the
(α + 2) initial conditions at time ti:

Y i =
(

yd(ti), ẏd(ti), ÿd(ti), · · · , y
(α+1)
d (ti)

)

and the (α + 2) final conditions at time tf :

Y f =
(

yd(tf ), ẏd(tf ), ÿd(tf ), · · · , y
(α+1)
d (tf )

)

A simple and usual solution consists in construct-
ing the (2α+3) degree polynomial spline satisfying
these (2α + 4) conditions :

y(t) =
2α+3
∑

k=0

ckτk(t) (12)

with τ(t) = t−ti

tf−ti

Obviously it is possible to impose intermediate
points. In this case the degree of the polynomial
spline, which corresponds to this trajectory, will
increase.

5. CONTRIBUTION OF THIS APPROACH
THROUGH THE EXAMPLE OF THE CRANE

This section presents through the example of the
crane, one of the most famous examples in flat
control (Fliess et al., 1993). Three interesting
points in the use of trigonometric spline: the effi-
ciency, the infinite derivability and the optimality
of the calculated path.

5.1 Flatness and control structure

The dynamical equations of the crane (Fig. 2) can
be decomposed into two parts :

• The trolley position (D) and the rope length(R)
are controlled by a PID controller.

• The (x, z) coordinates of the load m which
are controlled by a nonlinear flat controller.

The corresponding equations are :

Σ1 :















mẍ = −T sin(θ)
mz̈ = −T cos(θ) + mg

x = R sin(θ) + D + b cos(θ)
z = R cos(θ) − b sin(θ)

(13)
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Fig. 3. Structure of the controller

Σ2 :







McD̈ = F + T sin(θ) − f1Ḋ

J
R̈

b
= C + bT − f2

Ṙ

b

(14)

All the variables of these equations are repre-
sented on the figure 2 except for the friction on
the trolley f1 and the friction on the roll f2.

The subsystem Σ1 (and consequently the whole
system) is flat with the flat output (x, z) because
all the state variables verify the formulation (7) :










































R =
1

g − z̈

[

z

√

ẍ2 + (z̈ − g)
2
− bẍ

]

(a)

D = x −
1

g − z̈

[

b

√

ẍ2 + (z̈ − g)
2
− zẍ

]

(b)

θ = arctan

(

ẍ

z̈ − g

)

(c)

T = m

√

ẍ2 + (z̈ − g)
2

(d)

(15)

The subsystem Σ2 is controlled by the way of two
PID which adapt the force F and the torque C
with respect to the difference between the trol-
ley position D (resp. the rope length R) and
the desired position Dd (resp. the desired length
Rd). Therefor, the flat control has to determine
the necessary trolley position reference Dd and
rope length Rd reference, including the dynamic
of the plant, by using the equations (15a) and
(15b). Thus it needs to use the output of a path
generator for each component of the flat output
Xd = [xd, ẋd, ẍd]

T
and Zd = [zd, żd, z̈d], (the path

trajectories have to be at least twice derivable).
Globally, the structure of the controller can be
represented by the figure 3.

5.2 Interest of the method trough three simulation

results

In this section, three comparisons of simulation
results are presented. The comparisons are related
to the ”path generator”, which is either a standard
polynomial spline (equation 12) or a trigonometric
spline (equation 2). The degree of the polynomial
spline depends on the simulation but is always the
same for both trajectories .

5.2.1. Efficiency The first simulation corre-
sponds to a nominal case for a point-to-point
trajectory. We impose the initial condition Xi =
(0, 0, 0), Zi = (−10, 0, 0) and the final condition
Xf = (20, 0, 0), Zf = (−11, 0, 0) that leads to 5th-
order polynomials .
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Fig. 4. Simulation n◦1 : nominal case

Figure 4 shows that the two kinds of trajectory
are globally equivalent. Indeed, the trajectories
are sufficiently derivable (with respect to the
order of the flat control (7) and satisfy the initial
and final conditions. We can conclude that the
trigonometric spline are well-adapted to perform
a good trajectory tracking. Moreover, it can be
noted that the determination of parameters for
both cases are equivalent and consists in the
resolution of a linear system.

5.2.2. Infinity derivability The second point
concerns the infinity derivability of the trigono-
metric spline. Indeed from (2) it can be remarked
that whatever the degree of the considered spline
is, its derivatives are continuous and not strictly
null. This property is not true in the case of poly-
nomials spline where the derivatives become null
when the order of the derivative is bigger to the
order of the polynomial. The proposed simulation
illustrates this advantage : only initial and final
points are imposed to determine the trajectory
and leads to first order polynomials (for example
zd(t) = 0.033t + 10 or zd(τ) = 12 + 2 sin(τ − γ)).

The simulations (figure 5) show that the trajec-
tory generated by the polynomial spline involves
oscillations due to the fact that the second deriv-
ative is null and does not respect the order of the
flat model. Conversely, the trigonometric spline
performs trajectory correctly tracked by the sys-
tem, without any visible oscillation during the
travel. At the terminal point, however, it can be
observed that an important oscillation exist. This
oscillation appears because the final speed refer-
ence is not null when the final point is reached.

5.2.3. Optimality This third simulation is based
on the first one but an obstacle has been added
between the initial and the final point. To perform
the avoidance, two supplementary points have
been taken into account to design the trajectory.
These two points correspond to the following co-
ordinates XA = (5, 1, 0.1), ZA = (−5, 1, 0.15) and
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Fig. 5. Simulation n◦2 : first order polynomials
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Fig. 6. Simulation n◦3 : obstacle avoiding

XB = (15, 2, 0.1), ZB = (−5,−1,−1). The point
A must be reached at time t = 6s and the point
B at time t = 11s. Different approaches can be
considered for such a path planning. The first one
consists in calculating 3 trajectories (respectively
[XiA], [A,B] and finally [B,Xf ]) and this case can
be reduced to the previous simulation (repeated
three times). The second approach (used in this
section) consists in taking into account all the
constraints in the same path. Consequently the
trajectory has to satisfy 12 constraints (4 posi-
tions, 4 speeds and 4 accelerations), that leads to
a 11th order spline polynomial and trigonometric
splines. It can be observed that a very important
difference between the two paths. Indeed, the fig-
ure (6) shows that the path described by the spline
polynomial respects the constraints but is far from
optimum. This phenomenon is known in robotics
under the name of ”wandering”. Conversely the
path described by the trigonometric spline is per-
fectly adapted to the desired trajectory. In the
case of robot motion (Simon and C., 1991; Simon
and C., 1992), there is some elements of proof that
show that the proposed path is optimal.

6. CONCLUSION

In this paper was presented the use of trigonomet-
ric splines for the path planning. In a first part it

has been shown the interest of using such smooth
trajectory in the case of linear system. In a second
part, for non linear systems, it has been shown
the effectiveness of such an approach. The main
property exploited is that the function describing
the trigonometric spline is smooth (its derivatives
are not strictly null). This property implies that
the use of trigonometric splines is particularly
well adapted for the generation of trajectory in
the control of flat systems. Another appreciable
property of the trigonometric splines is that the
phenomenon of ”wandering” disappears and gives
some optimality for the calculated path. An actual
extension of this work consists in performing an
on-line version of this trajectory generation which
will be able to take into account the actual posi-
tion (and the successive derivatives) of the system
to re-calculate the parameters of the trigonomet-
ric spline.
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