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Abstract: The paper presents an analytical approach to the design of PID controllers by 
combining pole placement with symmetrical optimum method, for the integration plus 
first-order plant model. The desired closed-loop transfer function (c.l.t.f.) contains a 
second-order oscillating system and a lead-delay compensator. It is shown that the zero 
value of c.l.t.f. depends on the real-pole value of c.l.t.f. and in addition, there is only one 
pole value, which satisfies the assumptions of symmetrical optimum method. In these 
conditions, the analytical expressions of the controller parameters can be simplified. 
The method is applied to design a PID autopilot for heading control of a ship with first-
order Nomoto model. Copyright  2005 IFAC 
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1. INTRODUCTION 

 
Due to widespread industrial use of PID controllers, 
it is clear that even a small percentage improvement 
in PID design could have a major impact worldwide 
(Silva, et al., 2002). Tuning of PID controllers is a 
difficult task, as a three-parameter model should be 
defined and it must be accurate at higher frequencies 
(Astrom and Hagglund, 1995). Although, analytical 
methods are more convenient than graphical methods 
based on frequency diagrams, in industry, most 
controllers are tuned using frequency response 
methods (Tang and Ortega, 1993). 
Analytical methods rely on low-order models 
characterized by a small number of parameters. The 
most employed models are the integration plus first-
order model, which is used for thermal and 
electromechanical processes, and the first-order plus 
dead-time model, which is used for chemical 
processes (Datta, et al., 2000). 

In this paper, the integration plus first-order model 
type is used for ship dynamics modelling. Also, 
analytical design of PID autopilot for heading control 
is considered.  
 
If pole placement method (PPM) is used to 
synthesize the PID controller, the first step is to 
specify some performance conditions of the closed-
loop system, which lead to the expression of the 
closed-loop transfer function (c.l.t.f.) (Yuz and 
Salgado, 2003). In this paper, the desired c.l.t.f. 
contains a second-order oscillating system and a 
pole-zero pair, with real and negative values. 
Applying PPM, the zero value depends on the pole 
value, and the controller parameters depend on the 
parameters of c.l.t.f. The resulting open-loop transfer 
function (o.l.t.f.) contains a double-integrator element 
and a pole-zero pair, with real and negative values. 
Hence, the symmetrical optimum method (SOM) can 
be used (Kessler, 1958). 



Imposing symmetrical characteristics of the open-
loop transfer function, the analytical expressions of 
the controller parameters can be simplified.  
 
The goal of this paper is to find the pole-zero values 
of c.l.t.f. and the simplified analytical expressions of 
PID controller parameters, which satisfy two 
simultaneous conditions: the desired close-loop 
transfer function and symmetrical characteristics of 
the open-loop transfer function. 
 
The paper is organized as follows. Section 2 provides 
mathematical models used in simulations. In section 
3, the analytical expressions of PID controller 
parameters are obtained using PPM. In section 4, the 
expressions of the controller parameters are 
simplified, imposing symmetrical characteristics of 
the o.l.t.f. Section 5 describes the simulation results, 
using a PID autopilot for heading control of a ship. 
Conclusions are presented in section 6. 
 
 

2. MATHEMATICAL MODELS 
 
Consider the classical structure of the control loop 
without disturbances, as shown in Fig. 1. The plant 
model contains an integrator and the controller is of 
PID type. 
 
 
 
 
 
 
 
 
Fig. 1. Classical structure of the control loop 
  
The performance conditions of the closed-loop 
system can be specified imposing the expression of 
system transfer function. In general, a second order 
reference model is chosen to approximate the 
behaviour of the closed-loop system: 
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where ω0 > 0 is the natural frequency and ζ > 0 is the 
damping coefficient.  
 
Because the plant model contains an integrator and 
another one is included into the PID controller, the 
open-loop transfer function contains a double-
integrator, which can not be obtained with c.l.t.f. 
given in (1). Therefore, the reference model must be 
completed with a lead-delay compensator, which 
contains a pole-zero pair, with real and negative 
values (Ceanga, et al., 2001): 
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where z > 0 and p > 0. 

The plant model contains an integrator, and it is 
characterized by a dominant time constant (TP) and a 
gain coefficient (kP). The expression of the model 
depends on the process type.  
 
a) If the process is fast, then the small time constants 
can not be neglected and the model contains an 
equivalent small time constant (TΣ), corresponding to 
the sum of parasitic time constants: 
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where TΣ < TP . 
In this case, the PID controller is of the form: 
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where CC TTT << '
Σ . 

 
The open-loop transfer function is: 
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Using pole cancellation, the non-zero dominant pole 
of the plant model is cancelled by choosing: 

PC TT ='          (6) 
Thus, only two controller parameters must be 
determined:  kC  and  TC . 
 
It can be observed that, if the process does not have 
any non-zero dominant pole (model without time 
constant TP), then the controller is of PI type (without 
time constant TC

’ ) and the same parameters must be 
determined (kC  and  TC). 
 
b) If the process is slow, the equivalent small time 
constant (TΣ) can be neglected and the plant model is: 

( )1)(
+⋅

=
P

P
P sTs

ksH   (7) 

The PID controller contains a supplementary degree 
of freedom and it is of the form: 
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where CC TTTT <<< '
1Σ . 

The open-loop transfer function is: 
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Again, using pole cancellation, the non-zero 
dominant pole of the plant model is cancelled, 
resulting equation (6): PC TT =' . 
In this case, three controller parameters must be 
determined:  kC , TC and  T1 . 
 
This is a more general case because the time constant 
T1 is not imposed by the process and it can be 
chosen. So, in this paper, the plant model given in (7) 
is used for computations, but discussions are made 
also for model given in (3). 
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In both cases, the open-loop transfer functions, given 
in (5) and (9), have similar expressions: 
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With this open-loop transfer function, the 
symmetrical optimum method (SOM) can be used. 
The time constant T has different meanings: in the 
first case, it represents the equivalent small time 
constant (TΣ) imposed by the process, while in the 
second case, it is a controller parameter (T1). 
 
 

3. PID CONTROLLER DESIGN USING POLE 
PLACEMENT METHOD 

 
Consider the control system illustrated in Fig. 1 with 
the desired closed-loop transfer function given in (2). 
 

Proposition 1: For every pole value (s = -p) of 
the desired closed-loop transfer function given in (2), 
there is only one zero value (s = -z) for which the 
open-loop transfer function has a double-pole in 
origin, and in addition, the zero frequency is smaller 
than the pole frequency:   z < p. 
The proposition demonstration includes the next 
lemma results. 
 

Lemma 1: The necessary and sufficient condition, 
for the existence of a double-pole in origin for the 
open-loop transfer function of a control system 
illustrated in Fig. 1, starting from a desired c.l.t.f. of 
the form given in (2), is: 
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Proof L1: The transfer function of the open-loop 

system can be computed starting from the desired 
closed-loop transfer function (Nicolau, 2004): 
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From (12) it can be observed that a double-pole in 
origin is obtained if the equation below is satisfied: 
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which is equivalent with: 
pzzp 002 ωωζ =+   (14) 

From (14) it results the necessary and sufficient 
condition indicated in (11) (q.e.d.). 
 
 Implicitly, the unique zero value results, whose 
expression depends on the selected pole value: 
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For every frequency (p) of the pole, the 
corresponding frequency (z) of the zero is smaller: 
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So, for the lead-delay compensator introduced into 
the desired c.l.t.f. given in (2), the phase-lead effect 
is dominantly. 
 
In this case, the real values of pole-zero pair and 
conjugate complex poles, of the desired c.l.t.f. given 
in (2), are illustrated in Fig. 2. 
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Fig. 2. Poles and zero of the desired c.l.t.f. 
 
Using (11) and (13) in (12), the expression of the 
open-loop transfer function is obtained: 
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Denote by ω z and ω P ,  respectively, the zero and 
pole frequencies of the open-loop transfer function: 
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The open-loop transfer function can be rewritten: 
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Putting into evidence the time constants, the open-
loop transfer function can be rewritten, like in (10): 
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From (20), using (5) or (9) corresponding to the plant 
model indicated in (3) or (7), respectively, it results: 
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where T = TΣ  or  T = T1 . 



Equation (21) can be reduced to an equality of two 
polynomials of 3rd order in s variable: 
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where no pole cancellation was considered. 
 
The equality must be true for every frequency, 
resulting a four equation system: 
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The solutions of the equation system are the PID 
controller parameters (Nicolau, 2004): 
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It can be observed that the solution (24.3) represents 
the pole cancellation condition, considered in (6), and 
it does not depend on the pole value. 
 
If the process is slow and the equivalent small time 
constant (TΣ) is ignored, the time constant T = T1 
represents a controller parameter given in (24.4). 
The time constants must satisfy the inequalities: 

CC TTTT <<< '
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which can be transposed into frequency domain: 
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Therefore, the reference model must be chosen so 
that the parameters of c.l.t.f. (ω0 , ζ and p) to satisfy 
the system of inequalities: 
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If the time constant TΣ is imposed by the process and 
the plant model given in (3) is considered, then the 
solution (24.4) becomes: 
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which represents a supplementary condition for 
parameters of c.l.t.f. (ω0 , ζ and p). 
In addition, the time constants must satisfy the 
inequalities: 

CC TTT << '
Σ ,   (29) 

which can be transposed into frequency domain: 
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In this case, the reference model must be chosen so 
that the parameters of c.l.t.f. (ω0 , ζ and p) to satisfy 
the following conditions: 
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It can be observed that the first condition in (31) is 
more restrictive than the corresponding one in (27), 
while the last two conditions are the same. 
 
 

4. SYMMETRICAL CHARACTERISTICS OF 
OPEN-LOOP TRANSFER FUNCTION 

 
The PID controller parameters depend on the 
parameters of c.l.t.f. (ω0 , ζ and p). In general, ω0 and 
ζ characterize the desired system behaviour and they 
have fixed values, while the pole value can be 
chosen. Specific pole values can be imposed by using 
supplementary conditions. 
 
In this paper, the conditions for choosing the pole 
value refer to the symmetrical optimum method, 
which simplify the expressions of PID parameters. 
The goal is to find that pole value of the c.l.t.f., 
which satisfies the assumptions of symmetrical 
optimum method around natural frequency ω0, for 
the transfer function of open-loop system given in 
(19). Using this value, the expressions of PID 
parameters in (24) are simplified. 
 

Proposition 2: There is only one admissible value 
for the pole (s = - p) of c.l.t.f. given in (2), so that the 
corresponding o.l.t.f. given in (17) to have 
symmetrical characteristics around ω0 : 

0,,, 00 >∀= ζωω pp  (32) 
 

Proof: For the specified open-loop transfer 
function, the symmetry of magnitude-frequency 
characteristic around natural frequency ω0 implies 
the symmetry of phase-frequency characteristic. 
Therefore, only the symmetry of former 
characteristic must be imposed. 



































































The general form of the symmetrical optimum 
method imposes two conditions for magnitude-
frequency characteristic: 
a) the central frequency ω0 must be equally placed 
between zero and pole frequencies on the 10-base 
logarithmic scale: 
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b) for central frequency ω0 , the magnitude-frequency 
characteristic of o.l.t.f. must have 0 dB: 
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Using (18) in (33), the first condition becomes: 
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From (35), it results: 
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So, the condition (33) is satisfied if 0ω=p . 
 
For the second condition in (34), the magnitude of 
open-loop transfer function in frequency ω0 is 
computed from (19): 
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The frequencies ω z and ω P are replaced with their 
expressions from (18), resulting: 
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Using (38) in (34), the same solution in (36) is 
obtained: 2

0
2 ω=p    ⇒   0ω=p  

 

Concluding, there is only one admissible value for 
the pole of c.l.t.f., so that the corresponding o.l.t.f. to 
have symmetrical characteristics around ω0 (q.e.d.). 
 
From (11), it results: 
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The expression of c.l.t.f. becomes: 
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Also, from (18), the zero and pole frequencies of 
o.l.t.f. are obtained: 
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The open-loop transfer function can be rewritten: 
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The real values of pole-zero pair and conjugate 
complex poles, of the c.l.t.f. given in (40), are 
illustrated in Fig. 3. 
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Fig. 3. Poles and zero of the c.l.t.f. with 0ω=p  

The position of the zero 
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the parameter ζ: 

- if 
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2
1,0ζ , then 00 ζωω −<−<− z  and the 

zero is placed between the two points: 0ω−=s  and 

0ζω−=s , respectively; 

- if 
2
1=ζ , then 0ζω−=− z . This is the particular 

case of the Kessler’s symmetrical optimum method; 

- if 
2
1>ζ , then 00 ζω−>−> z  and the zero is 

placed to the right of the point 0ζω−=s . This is the 
case illustrated in Fig. 3. 
 
Knowing the pole value of c.l.t.f. ( 0ω=p ), the PID 
controller parameters result from (24): 
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The parameters in (43) correspond to the plant model 
given in (7) and PID controller given in (8). 
 
In this case, the conditions from (27) depend on the 
parameters ω0 and ζ. Hence, the reference model 
must be chosen so that the parameters of c.l.t.f. (ω0 
and ζ) to satisfy the system of inequalities: 
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Proposition 3: In the case of symmetrical 
characteristics of the o.l.t.f. given in (42) around the 
natural frequency ω0, the phase margin and the 
distance between the frequency points on the 10-base 
logarithmic scale depend only on the parameter ζ. 
 

Proof: The distance between the frequency points 
on the 10-base logarithmic scale can be easily 
obtained, using (41) in (33): 
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The phase margin is: 
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Using the o.l.t.f. given in (42), results: 
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It can be observed that, for particular case of the 
Kessler’s symmetrical optimum method ( 5.0=ζ ), 
the distance between frequency points is equal with 
an octave and the phase margin is 87.36=mϕ [deg]. 
 
 

5. SIMULATION RESULTS 
 

For simulations, the heading control problem of a 
ship is considered, using a PID autopilot.  
The ship model is linear, being identified for a ship 
speed of 22 knots (Nicolau, 2004). It is a first order 
Nomoto model of the form given in (7): 
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where ψ(s) and δ(s) represent the Laplace transforms 
of yaw angle and rudder angle, respectively. 
The ship model parameters are: 

0834.0−=Pk  [s -1],   98.5=PT  [s]     (49) 
The autopilot model is given in (8) and the desired 
c.l.t.f. is given in (2). The parameters ω0 and ζ are 
chosen from performance conditions (Fossen, 1994): 

9.0=ζ ,  1.00 =ω  [rad/s]       (50) 
Starting from the desired c.l.t.f. and imposing 
symmetrical characteristics of the o.l.t.f., the 
expressions in (40) and (42) are obtained. The step 
response of the c.l.t.f. is illustrated in Fig. 4. 
From (43), the autopilot parameters are obtained:  

2.1−=Ck , 28=CT [s], 98.5' =CT [s], 57.31 =T [s] 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Step response of the closed-loop system 

Considering 1Σ =T  [s], the conditions in (44) are 
satisfied. The symmetrical characteristics of the 
o.l.t.f. are illustrated in Fig. 5. It can be observed that 
the phase margin is 69.50=mϕ [deg]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Symmetrical characteristics of the o.l.t.f. 
 
 

6. CONCLUSIONS 
 
There is only one possible pair for the pole-zero 
values of c.l.t.f. so that the corresponding parameters 
of PID controller to satisfy two simultaneous 
conditions: the desired behaviour of close-loop 
system and symmetrical characteristics of the open-
loop transfer function. 
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