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Abstract: Insects exhibit unparalleled and incredibly robust flight dynamics in
the face of uncertainties. A fundamental principle contributing to this amazing
behavior is rapid processing and convergence of visual sensory information to
flight motor commands via spatial wide-field integration, accomplished by motion
pattern sensitive interneurons in the lobula plate portion of the visual ganglia.
Within a control-theoretic framework, a model for wide-field integration of retinal
image flow is developed, establishing the connection between image flow kernels
(retinal motion pattern sensitivities) and the feedback terms they represent. It is
demonstrated that the proposed output feedback methodology is sufficient to give
rise to experimentally observed navigational heuristics as the centering and forward
speed regulation responses exhibited by honeybees. Copyright c©2005 IFAC
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1. INTRODUCTION

Prevalent in many natural sensory systems is
the phenomenon of sensorimotor convergence,
wherein signals from arrays of spatially dis-
tributed and differentially tuned sensors converge
in vast number onto motor neurons responsible for
controlling locomotive behavior. A prime example
occurs in the processing of retinal image pattern
movement (optic flow) by the visuomotor systems
of insects. Insect visual systems encode optic flow
by combining motion estimates from arrays of
local motion detectors in a way that preserves
the spatial layout of the retina (Egelhaaf and
Borst, 1993). This sensory information is parsed
by wide-field motion sensitive interneurons (tan-
gential cells, or LPTCs) in the lobula plate section
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of the visual ganglia, as shown in (Figure 1A). The
output of these neurons synapse in the motor con-
trol centers, creating a sensory processing stage
which spatially integrates the optic flow (Borst
and Haag, 2002). This visuomotor convergence
technique, spatial wide-field integration, is used
by insects to extract behaviorally-relevant infor-
mation from optic flow patterns to modulate the
kinematics of flight (Frye and Dickinson, 2001).

Since optic flow was first recognized as a critical
source of information (Gibson, 1950), there has
been considerable interest in adapting this type
of sensory system for bio-inspired autonomous
navigation. Efforts have focused on utilizing one
or more properties of optic flow to provide navi-
gational cues (Barrows et al., 2003). Examples in-
clude corridor navigation based on balancing aver-
age lateral image velocities on wheeled robots, ob-
stacle avoidance via saccading away from regions
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Fig. 1. (A) Visuomotor system of insects. Wide-field retinal motion sensitive interneurons (tangential
cells) parse spatially-preserved visual information and transmit it to motor control centers. (B) WFI
processing model. Spatial modes of optic flow are extracted by retinal motion sensitivity kernels.

with high image velocities, and optic flow based
estimates of depth (Franz and Mallot, 2000). In
a more traditional approach, LPTC-based pro-
cessing models have been investigated as esti-
mators for vehicle kinematic states directly from
observed optic flow (Franz et al., 2004), as tan-
gential cell sensitivity maps show similarities to
flow fields that correspond to egomotion (Krapp
et al., 1998).

In this paper we propose a more general functional
role for wide-field sensitive neurons in navigation
and flight control as well as a novel methodol-
ogy for utilizing optic flow sensory information
in bio-inspired applications. We show how the
spatial harmonics of planar optic flow, extracted
with motion-pattern sensitive kernels representing
LPTCs (Figure 1B), correspond to feedback terms
which can be used to stabilize the different nav-
igational modes of flight. A model for wide-field
integration of retinal image flow is presented in
Section 2, and stabilization of obstacle avoidance
and speed regulation behaviors for planar hover-
craft dynamics is demonstrated in Section 3.

2. A MODEL FOR WIDE-FIELD
INTEGRATION PROCESSING OF IDEAL

PLANAR OPTIC FLOW

In the idealized case, optic flow is dependent
on rigid body motion (translation and rotation)
and on the spatial structure and distribution
of objects in the environment. (Koenderink and
van Doorn, 1997) provide a thorough derivation
of the equations of ideal optic flow based on
a three dimensional environment composed of
a finite number of rigid fiducial points. In this
paper we will consider the planar motion case,
restricting the rigid body motion to three degrees
of freedom (planar translation with single axis
rotation). For analysis purposes we will consider
the the optic flow to be a function of a continuous
angular coordinate γ relative to the body-fixed
frame b (Figure 2). Under these assumptions,

the instantaneous optic flow on a circular-shaped
sensor becomes a 2π-periodic function on the
circle S1 in the angular coordinate γ:

Q̇(γ,x) =−θ̇ + µ(γ,x) (ẋb sin γ − ẏb cos γ) ,(1)

where x = [x y θ ẋb ẏb θ̇]′ are the kinemat-
ics of the body-fixed frame b, and the nearness
µ(γ,x) = 1/r(γ,x), where r(γ,x) : [0, 2π] 7→
(0,∞) is the distance to the nearest obstacle
along direction Q(γ) ∈ S1, restricting contact
(Figure 2A). The kinematics are assumed to be
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Fig. 2. (A) Body-coordinate definitions (B) Ex-
ample planar optic flow

bounded functions of time, however the spatial
structure of the landscape can lead to discon-
tinuities, especially in a cluttered object field.
Hence µ(γ,x) and Q̇(γ,x) can be considered
bounded, piecewise-continuous functions of γ with
a finite (countable) number of discontinuities
(Figure 2B), effectively restricting them to the
space of square-integrable functions L2[0, 2π] =
{

f : [0, 2π]→ R :
∫ 2π

0
|f(γ)|2 dγ <∞

}

.

For this treatment we will represent lobula plate
tangential cells (or ipsi- and contralateral pairs
as may be appropriate) by a weight Fi(γ) ∈
L2[0, 2π], which models their sensitivity to var-
ious retinal motion patterns. Weights Fi(γ) are
essentially a spatially distributed set static gains
which are applied to the output at the correspond-
ing local motion detectors at retinal positions
γ. Through appropriate choices of Fi(γ), we are
interested in characterizing the available informa-
tion relevant for use in closed loop feedback. We
expect these weighting functions to be piecewise
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Fig. 3. Connections between WFI outputs and µ. (A) Planar tunnel geometry and lateral/rotational
perturbations of µ (B) µ-shaping in environments with higher order spatial structure

continuous and square-integrable, hence the re-
striction to the function space L2[0, 2π]. For this
initial analysis we will also assume that optic flow
estimation processing (photoreceptors and local
motion detectors) have negligible dynamics, that
is wide-field spatial integration (henceforth WFI)
can be modeled in entirety by the transformation
W , representing a spatial integration against the
optic flow kernel Q̇(γ,x), which acts on elements
Fi(γ) to produce a sensor output signal zi, hence
W : Fi ∈ L2[0, 2π] 7→ zi ∈ R. The transforma-
tion W defined by zi = WFi can be represented
as a linear functional using the inner product
structure available on L2[0, 2π]:

zi = 〈Q̇, Fi〉w =
1

π

∫ 2π

0

Q̇(γ,x) · Fi(γ) dγ. (2)

The inner product (2) has been defined with a
factor of 1/π to be compatible with the typical
Fourier harmonic component definition so that
later notation is simplified.

2.1 Characterization and Interpretation of WFI
Sensory Outputs for Planar Optic Flow

We are interested in characterizing the set of
all possible sensory outputs available within this
model and their dependency on vehicle motion
and spatial distribution of objects in the environ-
ment. Since L2[0, 2π] is a Hilbert space, and more
specifically a complete, separable inner prod-
uct space, a countably infinite orthonormal basis
{φn(γ)} exists. For fixed t, Q̇(γ,x) ∈ L2[0, 2π],
therefore we can expand it in a generalized Fourier
series Q̇(γ,x) =

∑∞
n 〈Q̇(γ,x), φn(γ)〉 φn(γ). If

we use trigonometric Fourier series, the orthonor-
mal basis under the inner product (2) is Φ =
{1/
√
2} ∪ {cosnγ : n = 1, 2, . . .} ∪ {sinnγ : n =

1, 2, . . .}, and the expansion becomes Q̇(γ,x) =
a0(x)

2 +
∑∞

n=1 an(x) cosnγ + bn(x) sinnγ, where
the state and nearness dependent spatial har-
monics of the optic flow are defined as a0(x) =

〈Q̇, 1/
√
2〉w = 1

π

∫ 2π

0
Q̇(γ,x)/

√
2 dγ, an(x) =

〈Q̇, cosnγ〉w = 1
π

∫ 2π

0
Q̇(γ,x) cosnγ dγ, and

bn(x) = 〈Q̇, sinnγ〉w = 1
π

∫ 2π

0
Q̇(γ,x) sinnγdγ.

With some manipulations, we can rewrite these

expressions in terms of the vehicle motion (ẋb, ẏb, θ̇)
and the spatial harmonics {A0, Ak, Bk : k =
1, 2, . . .} of the nearness function µ(γ,x):

a0(x) = (−2θ̇ + ẋbB1 − ẏbA1)/
√
2 (3)

an(x) =
ẋb
2

(−Bn−1 +Bn+1)−
ẏb
2
(An−1 +An+1)

bn(x) =
ẋb
2

(An−1 −An+1)−
ẏb
2
(Bn−1 +Bn+1) ,

where µ(γ,x) = A0(x)
2 +

∑∞
k=1 Ak(x) cosnγ +

Bk(x) sinnγ. Now, under the interpretationWΦ =
{a0(x)} ∪ {an(x) : n = 1, 2, . . .} ∪ {bn(x) : n =
1, 2, . . .}, the equations (3) define the action of
the linear transformation W : L2[0, 2π] 7→ R on
a basis Φ for the domain, and as such uniquely
characterize the set of all possible wide-field inte-
gration sensory outputs.

The relationships in (3) define how WFI outputs
depend on vehicle motion and object nearness,
however, the insight required to utilize them in
closed loop feedback is not readily apparent. As a
motivational example, we consider a planar tunnel
geometry (Figure 3A), which provides a reason-
able approximation to flight between two obsta-
cles. In this case the nearness function µ(γ,x) can
be expressed in closed form as a function of the
lateral position y, body frame orientation θ, and
the tunnel half-width a:

µ(γ,x) =















sin (γ + θ)

a− y
0 ≤ γ + θ < π

− sin (γ + θ)

a+ y
π ≤ γ + θ < 2π

. (4)

For a centered vehicle (y, θ) = (0, 0), (4) reduces
to |sin γ| /a, which has a Fourier series expansion

|sin γ|
a

=
2

aπ
−

∞
∑

k=2,4,6,...

4

aπ(k2 − 1)
cos kγ. (5)

Note that the expansion is composed of a DC
component and even cosine harmonics {Ak : k =
0, 2, 4, . . .}. (5) represents the balanced or equi-
librium nearness shape (Figure 3A), as it corre-
sponds to a position and orientation along the
centerline of the tunnel. For lateral and rotary



Table 1. Planar Tunnel Spatial Fourier
Decomposition

Mode Balanced Perturbed Linearized

A0
2
πa

2a
π(a2

−y2)
2
πa

A1 0 y sin θ
(a2
−y2)

0

B1 0 y cos θ
(a2
−y2)

y

a2

A2,4,... −
4

πa(k2
−1)

−
4a cos kθ

π(a2
−y2)(k2

−1)
−

4
πa(k2

−1)

B2,4,... 0 −
4a sin kθ

π(a2
−y2)(k2

−1)
−

4kθ
πa(k2

−1)

A3,5,... 0 0 0

B3,5,... 0 0 0

displacements, the spatial harmonics of the per-
turbed nearness function are computed in Table
1. From the linearizations about the point (y, θ) =
(0, 0) it is clear that the B1 harmonic provides
an estimate of the lateral displacement while the
B2 harmonic provides an estimate of the rotary
displacement. These results can be generalized
to environments with more complicated spatial
structure (Figure 3); nonzero B1,3,5,... correspond
to a lateral imbalance, B2,4,6,... to a rotary imbal-
ance, and A1,3,5,... are coupling terms for a lateral
plus a rotary imbalance.

3. WFI OUTPUT FEEDBACK

In this section we demonstrate the utility of WFI
sensory outputs (3) through coupling with planar
flight dynamics via static output feedback (Figure
4). The WFI operator is used to decompose the
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Fig. 4. Closed loop WFI output feedback

optic flow into spatial harmonics (3), and force
and torque control inputs u1, u2 are computed as
static combinations

ui = Ka
i0 a0 +

n
∑

j=1

Ka
ij aj +Kb

ij bj ,

which correspond to motion sensitivity functions

Fui
= Ka

i0 +

n
∑

j=1

Ka
ij cos jγ +Kb

ij sin jγ. (6)

In the initial version of this work presented here,
the intent is to show feasibility of the proposed

output feedback methodology, hence a linearized
control design which guarentees local asymptotic
stability of speed regulation and obstacle avoid-
ance responses will be discussed. Simulations of
the full nonlinear dynamics and spatially dis-
critized sensory system will be presented.

For analysis and simulation purposes we will use
the dynamics of the hovercraft from the Caltech
wireless testbed (Cremean et al., 2002). The ve-
hicle admits planar translational motion (surge,
sway) and a single axis of rotary motion (yaw). In
the inertial configuration (x, y, θ) the equations of
motion ẋ = f(x, u) are

mẍ= (Fs + Fp) cos θ − bẋ

mÿ = (Fs + Fp) sin θ − bẏ (7)

Jθ̈= (Fs − Fp)r0 − cθ̇.

The translational and rotational damping coeffi-
cients are denoted by b and c, respectively, the
starboard and port thruster forces are denoted by
Fs and Fp, and r0 denotes the thruster moment
arm. The vehicle mass is given by m and the
rotational inertia about the yaw axis is J .

In the case of a planar tunnel, the goal of the
control system will be to maintain a forward ref-
erence velocity and trajectory along the centerline
(ẋ, y, ẏ, θ, θ̇) = (v0, 0, 0, 0, 0), therefore it will be
useful to introduce the following state and input
definitions v = ẋ, u1 = Fs + Fp − bv0, and
u2 = Fs − Fp. Assuming small states (other than
v) and control inputs, the linearized equations of
motion for a centerline flight trajectory become

mv̇ = u1 + b(v0 − v)

mÿ = b(v0θ − ẏ) (8)

Jθ̈= r0u2 − cθ̇

Table 2 shows the sensory outputs a0, a1, b1 and
a2 in inertial coordinates for this environment.
The second column is the linearization z(x) =
z(x0) +

∑

i
∂z
∂xi

(x0) (xi − xi0), with respect to

the kinematic variables x = [ v y ẏ θ θ̇ ]′ along
a reference trajectory x0 = [ v0 0 0 0 0 ]′,
corresponding to a centerline flight path at a
constant velocity v0. Notice in (8) that the v

Table 2. Inertial WFI Sensory Outputs

WFI Sensory Output Linearization z(x)

a0 = −
√

2θ̇ + y
√

2(a2
−y2)

v −

√

2θ̇ + v0
√

2a2
y

a1 = 4a
3π(a2

−y2)
(2v sin θ − ẏ cos θ) 4

3πa
(2v0θ − ẏ)

b1 = 4a
3π(a2

−y2)
(2v cos θ + ẏ sin θ) 8

3πa
v

a2 = − y

2(a2
−y2)

(v cos 2θ + ẏ sin 2θ) −
v0
2a2

y

dynamics are decoupled from the y, θ dynamics
and in Table 2 the linearized b1 output is a
function of v only and the linearized a0, a1, a2
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Fig. 5. Simulations of WFI-based navigation. (A) Clutter response for a converging-diverging tunnel (B)
Centering response with a moving wall (C) Corridor navigation (D) Obstacle field navigation

outputs are functions of y, ẏ, θ, θ̇. Hence, with the
linearized system we can effectively decouple the
control problem into the clutter (forward speed
regulation) response and the centering (obstacle
avoidance) response.

For the forward speed regulation task, we define
a reference forward velocity r and corresponding
scaling factor N and close the loop by setting the
thrust input u1 = Kb

11(Nr−b1), corresponding to
the motion sensitivity function

Fu1
(γ) = Kb

11 sin γ. (9)

With r = v0, choose N = 8/(3πa) for zero
steady-state error, and the linearized closed loop
dynamics become v̇ = − 1

m

(

Kb
11N + b

)

(v − v0) .
One can easily verify that with Kb

11 > −b/N local
stability is achieved.

For the underactuated hovercraft no control in-
put is available in the sideslip (sway) direction.
However, the lateral dynamics are coupled to the
rotational dynamics through the bv0θ term in (8),
hence it is possible to accomplish stabilization of
both flight modes through the torque input, taken
to be u2 = Ka

20a0+Ka
21a1+Ka

22a2, corresponding
to the motion sensitivity function

Fu2
(γ) = Ka

20 +Ka
21 cos γ +Ka

22 cos 2γ. (10)

The natural dynamics contain only inertial and
viscous terms, therefore to achieve a stable cen-
tering/obstacle avoidance response, we require
Ka

21 < 0 for rotational stiffness and Ka
22 > 0 for

lateral stiffness. Additionally, rotational damping
can be added withKa

20 > 0, however the lineariza-
tion of the DC component a0 of Q̇ also has a
lateral imbalance term (Table 2), hence we further
need the restriction Ka

22 >
√
2Ka

20 to provide
the lateral stiffness required for a stable centering
response. This can be verified by the characteristic
equation for the linearized closed loop dynamics

s4 +

(

b

m
+
c+

√
2Ka

20

J

)

s3

+

(

bc

mJ
+

√
2bKa

20

mJ
− 4Ka

21v0

3πJa

)

s2 (11)

−4Ka
21bv0

3πmJa
s+

v2
0b(K

a
22 −

√
2Ka

20)

2mJa2
= 0.

It is useful at this point to make some compar-
isons with experimental assays in tunnel navi-
gation with honeybees, namely the converging-
diverging tunnel and the moving wall (Srinivasan
et al., 1996). The converging-diverging tunnel in-
vestigated the clutter response, as it was observed
bees regulated their forward flight speed in pro-
portion to tunnel width; the more narrow the
tunnel, the slower the flight speed. In the mov-
ing wall experiments, the centering response was
examined. Honeybees were directed to fly down a
tunnel with one of the walls moving at a constant
rate along the flight path. It was observed that
when the walls were stationary the bees tended
to fly along the centerline, but when one wall
was given constant motion along (against) the
direction of travel, bees shifted their trajectories
toward (away from) the moving wall.

We have constructed simulations based on the
full nonlinear planar flight dynamics (7) to qual-
itatively compare the performance of the WFI
control methodology to these experimental assays.
Environments were defined as bitmaps, and the
instantaneous optic flow was computed by esti-
mating the depth at the current location and
orientation at 60 equally-spaced circumferential
points and combining it with the current kine-
matics according to (1). Force and torque control
inputs are generated by taking the discrete inner
product of the instantaneous optic flow with ap-
propriately sampled versions of the motion sen-
sitivity functions (9) and (10). Sensitivity gains
Ka
ij and Kb

ij used in the simulation were chosen



based on the the performance index of maximizing
the bandwidth of the slow (lateral) flight mode in
the linearized closed loop system (11). Figure 5A
shows the centering/clutter responses for the hov-
ercraft navigating a converging-diverging tunnel;
the forward speed is indeed proportional to tunnel
width, as seen in (Srinivasan et al., 1996).

Within the framework we have constructed we
can investigate the moving wall assay by mod-
ifying the planar tunnel optic flow (1) with a
constant left or right wall velocity bias −vw êx =
−vw cos θ êxb

+ vw sin θ êyb
. Hence, ẋb 7→ ẋb +

vw cos θ and ẏb 7→ ẏb + vw sin θ for 0 ≤ γ + θ < π
(left wall movement) or π ≤ γ+θ < 2π (right wall
movement). For left wall motion, the steady-state
value y = yss along the equilibrium trajectory
xw : (v = v0, y = yss, ẏ = 0, θ = 0, θ̇ = 0)
that results in a zero torque input u2|xw

= 0 is
yss = − avw

2v0+vw

. Motion opposite the flight direc-
tion (vw > 0) will result in a shift right (yss < 0) of
the steady-state flight path while motion along the
flight direction (vw < 0) will result in a shift left
(yss > 0), as observed in (Srinivasan et al., 1996).
Also as vw → 0, yss → 0 and as vw → ±∞,
yss → ∓a. The simulated hovercraft flight path for
left wall motion with vw > 0 is plotted in Figure
5B, along with the time response of the first two
spatial cosine harmonics a1,a2 of the optic flow.
As discussed in the previous section, a2 provides a
corrective torque for the lateral imbalance, and a1

provides the opposing rotational stiffness required
for stabilization.

The closed loop behavior of this output feedback
methodology was also evaluated in more com-
plicated environments. Using the same feedback
structure and gains, the vehicle was directed to
navigate a complicated corridor (Figure 5C) and
an obstacle field (Figure 5D). Body velocities are
shown for the corridor, and the response of the
first two cosine harmonics of the optic flow are
shown for the obstacle field.

4. CONCLUSIONS

A control-oriented analytical model for spatial
wide-field integration (WFI) of retinal image flow
was developed. The model provides a unique
characterization of information available for feed-
back from WFI sensory systems, and establishes
the connection between global structure of op-
tic flow (retinal motion sensitivity patterns) and
the control-relevant information available for feed-
back.

The analysis presented suggests a more general
functional role for wide-field sensitive neurons
in navigation and flight control as well as a
novel methodology for utilizing optic flow in bio-
inspired applications. Rather than implementing

wide-field integrators as direct estimators of kine-
matics or depth, it was shown how the spatial
harmonics of planar optic flow, extracted with
motion-pattern sensitive kernels, correspond to
feedback terms which can be used to stabilize vari-
ous reflexive behaviors. The proposed WFI output
feedback methodology is shown to be equivalent to
stabilizing the closed loop dynamics with respect
to spatial perturbations from a balanced nearness
function, and has the advantage of being computa-
tionally inexpensive as each required control input
can be computed with an inner product of vectors
on the order of 60 elements.

Planar flight stabilization and navigation in com-
plicated environments has been demonstrated in
simulation, and it is shown that the proposed
methodology has sufficient complexity to give rise
to experimentally observed navigational heuristics
as the centering and forward speed regulation
responses exhibited by honeybees.
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