
AN UML MODELLING OF A NEURO-FUZZY
MONITORING SYSTEM

Nicolas Palluat, Daniel Racoceanu,
Noureddine Zerhouni

Laboratoire d’Automatique de Besançon, UMR CNRS
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Abstract: The complexity of real production systems implies more difficulties to
make an efficient monitoring and especially fault diagnosis. We propose a new
method supporting the operator to find the cause and the origin of a fault. To
obtain a diagnosis aid system that is both reactive and easy to configure, we define
a set of artificial intelligence tools using neuro-fuzzy techniques. The interest of
these techniques is to combine the neural networks learning capabilities and the
natural language formalism modelling capabilities of the fuzzy logic. Our approach
follows the UML approach with the description of the seven use cases of our
method. Copyright c© 2005 IFAC
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1. GENERAL CONCEPT

The improvement of the complexity of real pro-
duction systems in a hard concurrent marketing
context encourages the managers to give more
importance to the maintenance functions. The
industrial monitoring, which is one of the most
significant of them, is divided into two tasks: the
failure detection, and the failure diagnosis (failure
localization and identification of the cause) (How
et al., 1999; Pencolé, 2002; Tromp, 2000). But,
more complex the system is, more difficult moni-
toring will be. So, an efficient monitoring system
must be able to learn all changes (reconfiguration,
etc) and to take into account the experts and op-
erators human experiences. The proposed method
concern all phases of the monitoring function: the
fault detection with a dynamic neural network and
the fault diagnosis with a neuro-fuzzy tool. (figure
1)

The fault detection uses a recurrent neural net-
work (Zemouri et al., 2003). The output of this
kind of real time detection system is given by the
failure mode or failure symptom. This symptom
will be used in the diagnosis tool. The fault di-
agnosis uses a fuzzy neural network based on the
fault tree of the supervised system. This neural
network uses information from the CMMS historic
and will be able to learn any new maintenance
situations (symptom-mode, localization, origin).
In this way, we have a reactive and dynamic diag-
nosis system.

Our method is divided into several parts (Palluat
et al., 2004):

• Acquisition of relevant information of the
system: Using studies carried out on the sys-
tem (FMECA, fault tree, functional analysis
. . . ), and with the help of the production
and maintenance operators and managers,



Fig. 1. Overview of the system

it is necessary to extract critical zones to
monitor, as well as information available on
these zones: static (fault tree, functional ana-
lyzes . . . ) and dynamic information (CMMS,
historic, given sensors, SCADA . . . ).

• Fault detection system based on the dynamic
neural networks: The input of the detection
system is given by sensors data. In output, we
obtain the operating mode (symptom) of the
supervised element. The use of neural net-
works is justified by their training and par-
allel computation capabilities, their capacity
to solve problems inherent to the system non-
linearity and their computation speed when
implemented in an integrated circuit.

• Diagnosis aid system based on a fuzzy neural
network: The input of the diagnosis system
will be the degree of membership of each
operating mode given by the detection sys-
tem. We find also external qualitative or
quantitative inputs like information given by
operators to improve diagnosis. In output, we
find a list of possible causes ordered by degree
of credibility, and as complementary infor-
mation: the degree of severity. These degrees
help the maintenance manager to evaluate
and plan the maintenance actions.

During the process, the detection system scans
continuously the critical element. When a failure
is detected or predicted, an alarm is raised and
the diagnosis aid system starts. Detection keeps
working. According to the information provided
by the detection system, the diagnosis aid system
proposes to the operator the possible causes of
the problem as well as the fuzzy interpretation of
these causes.

We presented in (Palluat et al., 2004) an overview
of this system. In this paper, we present how our
tool can be used and his link with maintenance
actors. Our design approach follows the UML
standard (OMG, 2003; Larman, 2002; Rumbaugh
et al., 1998) and starts by the specification of the
use cases, from the point of view of the user of the
monitoring tool. We thus propose seven use cases,
corresponding to a marketing study implying a
large consortium of maintenance partners 1

1 ITEA European Project – PROTEUS – A E-
maintenance Platform (web site : http://www.

proteus-iteaproject.com/).

2. USE CASES

First, it is necessary to identify the actors. We
have the human actors and the non-human actors.

• the CMMS − Computerized Maintenance
Management System (non-human actor)

• the FMECA − Failure Modes Effects and
Critical Analysis (non-human actor)

• the FT − Fault Tree (non-human actor)
• the Maintenance Manager (human actor)
• the Maintenance Operator (human actor)
• the SCADA − Supervisory Control And

Data Acquisition (non-human actor)
• the Tool Expert (human actor)

For each human actor, we define a set of use cases.
We obtain seven use cases:

• to create a new tool,
• to configure the tool,
• to initialize the tool,
• to raise an alert,
• to perform a diagnosis,
• to update a configuration,
• to update the model of the tool.

In the figure 2 and 3, we show connections between
the use cases and the actors. We organize the use
cases and group them in two coherent functional
packages:

• Off-line package for use cases used when the
tool doesn’t work,

• On-line package for use cases used when the
tool works.

We develop by next the textual description of
the use cases. This method of description is
not normalized in UML so we use a formaliza-
tion inspired by the work of Alistair Cockburn
(Cockburn, 2000).

2.1 To create a new tool

The Maintenance Manager needs a new monitor-
ing tool. We assume that the hardware and the
software are installed and working.

Main Actor: Maintenance Manager.
Secondary Actor: Tool Expert.
Goal: Creation of a new tool.
Precondition: The Maintenance Manager want

a new monitoring tool. He knows the critical



Fig. 2. Off-Line Package Fig. 3. On-Line Package

sub-equipment to monitor and all the acces-
sible data (sensors, SOA − Symptom, Origin,
Action) with the maintenance tools (GMAO,
SCADA, FT, FMECA)

Postcondition: A new tool is in use.
Main scenario:

(1) Maintenance Manager asks to the Tool Ex-
pert to create a new tool;

(2) Tool Expert launchs the use case ”To con-
figure the tool”;

(3) Tool Expert launchs the use case ”To ini-
tialize the tool”;

(4) Tool Expert informs the Maintenance Man-
ager of the setting up of the tool.

2.2 To configure the tool

Main Scenario of the neuro-fuzzy system configu-
ration starts with the request of the Fault Tree.
The Tool Expert translates the Fault Tree into
a Fuzzy Neural Network. The architecture of the
tool will also take into account the sensors avail-
ability trough the SCADA.

Main Actor: Tool Expert.
Secondary Actors: The two systems FT and

SCADA.
Goal: Configuration of the tool.
Precondition: The Maintenance Manager asks

to the tool expert to create a new tool.
Postcondition: The tool is configured.
Main scenario:

(1) System FT provides the fault tree to the
tool expert;

(2) Tool Expert configure the diagnosis tool
with the fault tree;

(3) Tool Expert configure the detection tool so
that it is subscribed to the SCADA in order
to benefits to the availability of the useful
sensors.

2.3 To initialize the tool

The initialization of a Neurofuzzy system consists
in setting values for the diagnosis that will be

inspired from the existent FMECA and from
the CMMS. This process will take into account
the criticity (frequency, severity) of the failures
and the associated Symptom, Origin and Actions
given by the CMMS.

Main Actor: Tool Expert.
Secondary Actors: The three systems FMECA,

CMMS and SCADA.
Goal: Initialization of the tool.
Precondition: The tool is configured.
Postcondition: The tool is initialized.
Main scenario:

(1) System FMECA provides the FMECA to
the tool expert;

(2) Tool Expert analyzes the FMECA and ex-
tracts useful data (Operating mode, causes,
frequency and severity);

(3) Tool Expert initialize the detection tool
and the diagnosis tool with the extracted
data;

(4) Tool Expert initialize the diagnosis tool
so that it is subscribed with the events
maintenance of CMMS system.

(5) Detection tool receives the sensors value at
the appropriate frequency of the SCADA
system.

2.4 To raise an alert

A failure has been detected or predicted by the
neuro-fuzzy system and the alert is emitted to the
maintenance manager in order to prevent him that
a failure has occurred or has a great possibility to
occur in the near future evolution of the system.

Main Actor: Maintenance Manager.
Goal: Raising an alert due to a fault or to a

prediction of a fault.
Precondition: The tool is in use.
Postcondition: An alert is sent to the Mainte-

nance Manager.
Main scenario:



(1) Detection tool has one or more of their
operating mode which the degree exceed a
threshold;

(2) An alert is sent to the Maintenance Man-
ager.

2.5 To perform a diagnosis

A failure has been detected or predicted and the
Maintenance Operator needs help to diagnose.
First a request of information is emitted. After-
ward, the Maintenance Operator fills the infor-
mation form in. The system will suggest then a
diagnosis.Finqlly, the Maintenance Operator vali-
dates the diagnosis.

Main Actor: Maintenance Operator.
Goal: The maintenance operator needs the assis-

tance of the tool.
Precondition: The tool is in use. A failure was

detected or predicted. The Maintenance Oper-
ator needs the assistance of the tool.

Main scenario:
(1) Maintenance Operator request an assis-

tance for diagnosis;
(2) tool provides a set of possible causes classi-

fied per degree of credibility and degree of
severity;

(3) maintenance operator validates the diagno-
sis.

Exceptions:
1a. Maintenance operator chooses a detailed
diagnosis.
(1) Maintenance operator reaches a special-

ized form allowing him to add information
which cannot be given by the detection
tool (smoked, odors, . . . ) and the use case
continue to the step 2 of the main scenario.

3a. Maintenance operator is not satisfied by the
results.
(1) Maintenance operator returns to the step

1 of the main scenario to launch a new
request.

(1) Maintenance operator gives up the request.
the use case finishes (failure).

2.6 To update a configuration

The Maintenance Manager wants to add a new
sensor to the tool. The Tool Expert add the asso-
ciated input to the system and request SCADA to
send the values at the suitable frequency acquisi-
tion.

Main Actor: Maintenance Manager.
Secondary Actors: Tool Expert and the system

SCADA.
Goal: The Maintenance Manager wants to add a

new sensor in the tool.
Precondition: The tool is in use.
Postcondition: The tool is updated.

Main scenario:
(1) Maintenance Manager gives the designa-

tion of the sensor to the Tool Expert;
(2) Tool Expert adds a new input to the detec-

tion tool;
(3) Tool Expert updates the detection tool so

that it is subscribed to the SCADA in order
to benefits to the availability of the new
sensor;

(4) Detection tool receives the sensors value at
the appropriate frequency of the SCADA
system.

Exceptions:
2a. Updating the configuration creates a new
operating mode.
(1) Maintenance Manager gives the link be-

tween this new mode and a step in the Fault
Tree;

(2) Tool Expert updates the diagnosis tool and
go to the step 3 of the main scenario.

2.7 To update the model of the tool

The main actor of the model update (on line
training) is the CMMS. First, we check the case
in the database (where a case is a pair (symptom,
origin) where a symptom is a detectable failure
and the origin is the primary cause). Secondly,
we update parameters for this case. If the case
is a new case, the Maintenance Manager gives
the severity of the failure and the new case is
integrated into the tool.

Main Actor: CMMS.
Secondary Actor: Maintenance Manager.
Precondition: The tool is in use.
Postcondition: The tool is updated.
Main scenario:

(1) The new maintenance task is done and is
converting into a pair (symptom, origin);

(2) Parameters of the diagnosis tool for this
case are updated;

(3) The tool is updated.
Exceptions:

2a. This is a new case.
(1) The tool send a request to the Maintenance

Manager to have the severity of this cause;
(2) The Maintenance Manager sends the infor-

mation.
(3) The tool is updated.

2.8 conclusion

In this part, we saw the different textual descrip-
tion of the tool. UML provides a number of dia-
grams that we don’t show in this paper. These di-
agrams could be sequence diagrams, collaboration
diagrams, interaction diagram, . . . . Other thinks
can be shown in a UML method like classes. The
table 1 shows the package, the different use cases,
the actors links by use case and classes.



Table 1. Synthesis analysis of use cases

Package Use cases Actors Classes

Off-line package Create a new tool Maintenance Manager Send a request for a new tool
Tool Expert Configure the tool

Initialize the tool
Validate the tool

Configure a tool Tool Expert Transform FT
FT Provide the FT
SCADA Subscribe to SCADA

Initialize the tool Tool Expert Modify parameter of the tool with FMECA
FMECA Provide the FMECA
CMMS Subscribe to CMMS
SCADA Send value of the sensors

On-line Package Raise an Alert Maintenance Manager Verify Alert
Perform a Diagnosis Maintenance Operator Diagnose

Detailed Diagnose
Update a configuration Maintenance Manager Add sensor

Tool Expert Add a new mode
Update the tool

SCADA Subscribe to SCADA
Update the model CMMS Send the new maintenance event

Maintenance Manager Send the severity

3. SYNTHESIS AND PROTOTYPING OF
THE MONITORING SYSTEM

Our system is divided into two parts: a dynamic
neural network detection system and a neuro-
fuzzy diagnosis system. Before using the neuro-
fuzzy tool, two steps are necessary: the first one
is the configuration where data are collected and
extracted to create the tools and the second one is
the initialization where data extracted are learned
by the tools. In use, the tools are in detection state
where the dynamic neural network determines
in which mode the system is with an associated
possibility. When there is a problem on the sys-
tem, the detection tool emits an alert. When a
diagnosis is requested, the diagnosis tool uses data
of the detection tool to give possible localizations
and origins of the problem, classified by degree
of credibility and severity. During the monitoring,
the maintenance manager can improve the tools
by configuration and/or model updating.

These tools are applied on industrial system, a
flexible platform, available to the Besançon ”In-
stitut de Productique” 2 (France). This platform is
equipped with five PLC communicating between
them through a local industrial network. The flex-
ible system permits to move pallets which can
receive components to assembly.

The network permits to exchange the information
received by the PLC concerning the changes of
states of the sensors, the sequences of the control
program, and operations made on the pallets. The
platform is divided into five stations. Each station
has its own PLC. They work independently.

2 Institut de Productique, Besanon, France http://www.

institutdeproductique.com/

3.1 Overall vision of the platform

The platform consists of two lines¿

On the primary line, the pallets circulate between
all the stations. This line must always be free to
let circulate the pallets.

The secondary line is dedicated to the treatment
of the tasks, which will be made on the pallets. It
is on this line that the robots and the manipulator
are installed. It is possible to forward a pallet of
a station to the next one without returning to the
internal line.

On the platform, the pallets are belt-driven. These
belts are driven by an electric motor integrated in
each station.

The pallets are provided with a magnetic la-
bel, which is there ”embarked memory”. These
memories can be read in each station thanks
to the RFID 3 tags read/write magnetic heads
(BALOGH). These labels make it possible to
memorize the assembly range of the products, to
know by which station(s), the pallets must pass.

3.2 Application of our method

For this example, we limit the study to the input
of one station. We can find below the extracted
fault tree (figure 4) and the extracted FMECA
(table 2).

We test the system by blocking a pallet. The pallet
should not go to the external line and the blocker
S1 jams up so the pallet is blocked on primary line.
A scheme of this situation is drawing in figure 5.

The detection tool gives the alert to the mainte-
nance manager who decides to launch a diagnosis;

3 Radio Frequency Identification



Table 2. Extracted FMECA.

Failure Modes Cause Frequency Severity

Pallet jam to D1 sensor 4 2
the inner jack failure
Pallet jam to S1 actuator 3 4
the inner jack jam up
Pallet jam to Jack actuator 1 2
the inner jack failure

Fig. 4. Extracted fault tree
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Fig. 5. Overview of a pallet jams to the inner jack

the diagnostic tool gives the following results (ta-
ble 3).

Table 3. Diagnosis results.

Possibility Cause Severity

83,77 D1 sensor failure 2/5
61,22 S1 actuator jam down 4/5
35,44 Jack actuator failure 2/5
32,31 Label failure 0/5
32,31 Balogh failure 0/5
22,41 S1 actuator jam up 0/5
0 Pallet on sensor D4 0/5
0 Pallet on sensor D3 0/5
0 D4 sensor failure 0/5
0 D3 sensor failure 0/5

The system gives ”D1 sensor failure” as the best
possible cause of the problem. In fact, there is
the good answer. For this configuration, there is
another possible response which is S1 actuator
jam up. The diagnosis doesn’t give it in the
second place because its never happened before.
So, in the future, the maintenance manager can
decide to improve the diagnosis by introduce this
possibility.

4. CONCLUSION

In this paper, we present a new neuro-fuzzy tool
following an UML approach. Our system is di-
vided into two parts: a dynamic neural network
detection system and a neuro-fuzzy diagnosis sys-
tem. Before using the neuro-fuzzy tool, two steps

are necessary: the first one is the configuration
where data are collected and extracted to create
the tools and the second one is the initialization
where data extracted are learned by the tools. In
use, the tools are in detection state where the dy-
namic neural network determines in which mode
the system is with an associated possibility. When
there is a problem on the system, the detection
tool raises an alert.

When a diagnosis is requested, the diagnosis tool
uses data of the detection tool to give possible
localizations and origins of the problem, classified
by degree of credibility and severity. During the
monitoring, the maintenance manager can im-
prove the tools by configuration and/or model
updating.

We illustrate the use of our diagnosis aid tool on
an industrial flexible platform.

Further work will investigate methods to improve
the online learning of the aid diagnosis tool.
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de systèmes événements discrets : applica-
tion aux réseaux de télécommunications. PhD
thesis. Université de Rennes I.
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