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Abstract: An adaptive neural-fuzzy controller is presented in this paper for me-
chanical systems with nonholonomic constraints in the presence of uncertainties
about plant parameters. The controller is designed based on a reduced model.
The neural-fuzzy (NF) controller is constructed in order to eliminate the need
for dynamic modeling and error prone process in obtaining the regressor matrix.
The proposed controller guarantees that the system motion asymptotically con-
verges to the desired manifold. Numerical simulation are conducted to verify the
effectiveness of the proposed method. Copyright c©2005 IFAC.
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1. INTRODUCTION

In recent years, much attention has been de-
voted to the problem of controlling nonholo-
nomic systems. Many mechanical systems (such
as wheeled mobile robots, tractor-trailer sys-
tems, free-floating space robots, underwater ve-
hicles, etc.) are subjected to nonholonomic ve-
locity constraints (Kolmanovsky and McClam-
roch, 1995)(Campion et al., 1991). Due to Brock-
ett’s theorem (Brockett, 1983), it is well known
that nonholonomic systems with restricted mobil-
ity cannot be stabilized to a desired configura-
tion via differentiable, or even continuous, pure-
state feedback (Bloch et al., 1992). Instead, by
using decomposition transformations and nonlin-
ear feedbacks, conditions for smooth asymptotic
stabilization to an equilibrium manifold can be
established (Campion et al., 1991). This makes
the stabilization problem of nonholonomic sys-
tems one of the most challenging topics in control
theory and applications.

Up to now, most research work on controller de-
sign for nonholonomic systems has being focused
on the kinematic control problem, where the sys-
tems are represented by their kinematic models
and velocity acts as the control input. In practice,

however, it is more realistic to formulate the non-
holonomic system control problem at the dynamic
level, where the torque and force are taken as the
control inputs. Different researchers have inves-
tigated this problem. Several results have been
published in recent years wherein motion control
design of nonholonomic mechanical systems has
been successfully treated (Bloch et al., 1992)(You
and Chen, 1993). In these designs, the dynamic
models were assumed to be perfect, and exactly
known. All these methods depend on the exact
cancelation of the robot dynamics to achieve the
control objective.

In real applications, however, perfect cancelation
of the robot dynamics is rarely possible. Recently,
the control problem for nonholonomic mechanical
systems with parametric uncertainties have been
studied (Su and Stepanenko, 1995)(Chang and
Chen, 2000)(Ge et al., 2001)(Wang et al., 2004).

In order to cope with highly uncertain nonlinear
systems, as an alternative, adaptive approxima-
tion based control is presented to solve the prob-
lem. NF is a neural network-based fuzzy logic
control and decision system, and is suitable for
online nonlinear systems identification and con-
trol (Lin and Lee, 1991). It brings the learning



abilities of the neural networks to automate and
realize the design of fuzzy logic control systems.
Therefore, in contrast to the pure neural net-
works or fuzzy logic, the NF possesses both of
their advantages. In this paper, the parameter-
ized NF approximator is expressed as a series of
the commonly used Radial Basis Function (RBF)
because of its nice approximation properties, i.e.,
yNF =

∑
j wjφ(σj , ‖z − cj‖), where wj is the

connection weight, and cj and σj are the center
and width respectively, which determine the shape
of function φ. In RBF approximation, tuning of
the parameters cj and σj is not a trivial task
since they both appear nonlinearly. In this paper,
a novel parameter updating law of wj , cj and σj

derived based on Lyapunov synthesis is presented
to design stable NF controller guaranteeing the
closed-loop stability for a class of the nonholo-
nomic constrained systems. It is shown that the
system motion converges to the desired manifold
asymptotically. In real implementation, the cen-
ter and width of the NF approximator can be
fixed easily by choosing the updating gain to zero
according to different system configuration and
requirements.

2. LINEARLY PARAMETERIZED
NEURO-FUZZY SYSTEMS

Fuzzy systems are rule-based systems. A typical
format of a fuzzy system consists of a collection
of fuzzifier, fuzzy rule base, fuzzy inference en-
gine and defuzzifier. The purpose of fuzzifier is to
provide scale mapping of the crisp input corre-
sponding to the linguistic forms as labeled by a
fuzzy set. Fuzzy inference engine is the kernel of
fuzzy system and uses the fuzzy IF-THEN rules
to determine a mapping from input universe to
output universe based on fuzzy logic policies. The
TSK-type fuzzy rule (Takagi and Sugeno, 1985)
used here is in the following form:

Rl : IF z1 is F l
1 AND z2 is F l

2 · · · AND

znz is F l
nz

, THEN yl = kl
0 + kl

1z1 + · · ·+ kl
nz

znz

where F l
i (i = 1, 2, . . . , nz) are fuzzy sets,

kl
j (j = 0, 1, . . . , nz) are real-valued parameters,

z = [z1, z2, . . . , znz ]T is the system input, and yl

is the fuzzy system output due to the l-th rule
Rl (l = 1, 2, . . . , N). In this paper, the zero-order
TSK-fuzzy system is chosen, i.e., yl = kl

0. Finally,
defuzzifier is used as the scale mapping of the
linguistic value into a corresponding crisp output
value.

The NF is a multilayer feedforward network that
integrates the TSK-type fuzzy system and RBF
neural network into a connectionist structure. It
consists of four layers as shown in Figure 1.

Layer 1: This layer is the input layer, whose
nodes just transmit the input variables z to the
next layer directly.

Layer 2: This layer is the membership function
layer that receives the signals from the input
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Fig. 1. The structure of NF system

layer and calculates the membership of the input
variables. The membership function chosen in this
paper is the Gaussian membership function as
described by:

µli(zi, cli, σli) = exp
(
− (zi − cli)2

σ2
li

)
(1)

where i = 1, 2, · · · , nz, and l = 1, 2, · · · , N .

Layer 3: This layer is the rule layer. The number
of the nodes in this layer represents the number
of fuzzy rules. It computes the fired strength of a
rule as following

κl(z, cl, σl) =
nz∏

i=1

µli, l = 1, 2, · · · , N (2)

where cl = [cl1, · · · , clnz ]T and σl = [σl1, · · · , σlnz ]T .

Layer 4: This layer is the output layer, where
defuzzification of the TSK-type NF system is
performed. The output of the whole NF system
is given by:

yNF =
N∑

l=1

φly
l

=
N∑

l=1




∏nz

i=1 exp
(
− (zi−cli)

2

σ2
li

)

∑N
l=1

∏nz

i=1 exp
(
− (zi−cli)2

σ2
li

)

 kl

0

= WT Φ(z, c, σ) (3)

where

φl(z, cl, σl) = κl/

N∑

l=1

κl (4)

Φ(z, c, σ) = [φ1, φ2, · · · , φN ]T (5)

W = [k1
0, k

2
0, · · · , kN

0 ]T (6)

with c = [cT
1 , · · · , cT

N ]T and σ = [σT
1 , · · · , σT

N ]T .

It has been proved by the universal approximation
theorem (Wang, 1992) that, if the number of fuzzy
rules N is sufficiently large, WT Φ(z, c, σ) can
approximate any continuous function, g(z), to any
arbitrary accuracy over a compact set Ωz ⊂ Rnz ,
i.e.
g(z) = W ∗T Φ(z, c∗, σ∗) + εg(z), ∀z ∈ Ωz ⊂ Rnz

where εg(z) is the approximation error which is
bounded over the compact set Ωz and W ∗, c∗ and
σ∗ are defined as the values of W , c and σ that
minimize |εg| for all z ∈ Ωz ⊂ Rnz .



Let Ŵ , ĉ and σ̂ be the estimates of W ∗, c∗ and
σ∗, the following results are useful to characterize
the approximation error of the NF system.

Assumption 1. On the compact set Ωz, the ideal
NF parameter vectors W ∗, c∗, σ∗ are bounded by

‖W ∗‖ ≤ wmax, ‖c∗‖ ≤ cmax, ‖σ∗‖ ≤ σmax

with wmax, cmax and σmax being positive con-
stants and the approximation error is bounded by
|εg(z)| ≤ ε∗g.

Lemma 1. (Jia et al., 2004) NF approximation
error can be expressed as

ŴT Φ(z, ĉ, σ̂)−W ∗T Φ(z, c∗, σ∗) =

W̃T (Φ̂− Φ̂′cĉ− Φ̂′σσ̂) + ŴT (Φ̂′cc̃ + Φ̂′σσ̃) + du(7)

where Φ̂ = Φ(z, ĉ, σ̂), W̃ = Ŵ−W ∗, c̃ = ĉ−c∗ and
σ̃ = σ̂−σ∗ are defined to be the estimation errors,
Φ̂′c = [φ̂c

′
1, φ̂c

′
2, · · · , φ̂c

′
N ]T ∈ RN×(Nnz) and Φ̂′σ =

[φ̂σ
′
1, φ̂σ

′
2, · · · , φ̂σ

′
N ]T ∈ RN×(Nnz), where

φ̂c
′
i =

[
∂φi

∂c11
, . . . ,

∂φi

∂c1nz

, . . . ,
∂φi

∂cN1
, . . . ,

∂φi

∂cNnz

]

φ̂σ
′
i =

[
∂φi

∂σ11
, . . . ,

∂φi

∂σ1nz

, . . . ,
∂φi

∂σN1
, . . . ,

∂φi

∂σNnz

]

for c = ĉ, σ = σ̂, i = 1, 2, . . . , N , and du is
bounded by

|du| ≤ cmax‖ŴT Φ̂′c‖+ σmax‖ŴT Φ̂′σ‖
+wmax(1 + ‖Φ̂′cĉ‖+ ‖Φ̂′σσ̂‖) (8)

3. SYSTEM DESCRIPTIONS

According to the Euler-Lagrangian formulation,
the joint-space dynamics of an n-dimensional con-
strained mechanical system can be described as

D(q)q̈ + C(q, q̇)q̇ + G(q) = B(q)τ + f (9)

where q = [q1, . . . , qn]T ∈ Rn denotes the vector
of generalized coordinates; τ ∈ Rr is the vector
of generalized control input force; f ∈ Rn denotes
the vector of constraint forces; D(q) ∈ Rn×n is
the symmetric bounded positive definite inertia
matrix; C(q̇, q)q̇ ∈ Rn denotes the Centripetal
and Coriolis torques; G(q) ∈ Rn is the gravita-
tional torque vector; B ∈ Rn×r is a full rank
input transformation matrix and is assumed to be
known because it is a function of fixed geometry
of the system.

Property 1. : Matrix (Ḋ− 2C) is skew-symmetric
if all the elements of matrix C(q, q̇) are defined in
the Christoffel form (Ge et al., 1998).

When the system is subjected to nonholonomic
constraint, the m nonintegrable and independent
velocity constraints can be expressed as

J(q)q̇ = 0 (10)

where J : Rn → Rm×n is the kinematic constraint
matrix which is assume to have full rank m.

The constraint (10) is referred to the classical
nonholonomic constraint when it is not integrable.
In the paper, constraint (10) is assumed to be
completely nonholonomic and exactly known. The
effect of the constraints can be viewed as restrict-
ing the dynamics on the manifold Ωnh as

Ωnh = {(q, q̇)|J(q)q̇ = 0}
It is noted that since the nonholonomic constraint
(10) is nonintegrable, there is no explicit restric-
tion on the values of the configuration variables.

Based on the nonholonomic constraint (10), the
generalized constraint forces in mechanical system
(9) can be given by

f = JT (q)λ

where λ ∈ Rm is known as friction force on
the contact point between the rigid body and
environmental surfaces.

Denote the kinematic constraint matrix J(q) as

JT (q) = [J1(q), . . . , Jm(q)]

where J1(q), . . . , Jm(q) are smooth n-dimensional
covector fields on R. Assume that the annihila-
tor of the co-distribution spanned by the cov-
ector fields J1(q), . . . , Jm(q) is an (n − m)-
dimensional smooth nonsingular distribution ∆
on R. This distribution ∆ is spanned by a set
of (n − m) smooth and linearly independent
vector fields r1(q), . . . , rn−m(q), i.e., ∆ =
span{r1(q), . . . , rn−m(q)}. Then the following
relations are satisfied

RT (q)JT (q) = 0 (11)

where R(q) = [r1(q), . . . , rn−m(q)] ∈ Rn×(n−m).
Constraints (10) and (11) imply the existence of
vector ẋ ∈ Rn−m, such that

q̇ = R(q)ẋ (12)

Differentiating (12), we obtain

q̈ = Rẍ + Ṙẋ

The dynamic equation (9), which satisfies the
nonholonomic constraint (10), can be rewritten in
terms of the internal state variable ẋ as

D(q)R(q)ẍ + C2(q, q̇)ẋ + G(q)

= B(q)τ + JT (q)λ (13)

where C2(q, q̇) = D(q)Ṙ(q) + C(q, q̇)R(q).

Property 2. : Matrix DR(q) is symmetric and
positive-definite.

Property 3. : NR = ḊR(q) − 2CR(q, q̇) is skew-
symmetric.

Property 4. : D(q), G(q), J(q) and R(q) are
bounded and continuous if x is bounded and uni-
formly continuous. C(q, q̇) and Ṙ(q) are bounded



if ẋ is bounded. C(q, q̇) and Ṙ(q) are uniformly
continuous if ẋ is uniformly continuous. (Chang
and Chen, 2000)

Remark 1. System (13) is the so called reduced
form of nonholonomic mechanical system. Since
constraint (10) has been embedded into the dy-
namic equation (9), (13) is suitable for the sub-
sequent controller design. It should be noted that
reduced state space is (2n −m) dimensional (Su
and Stepanenko, 1995). The system is described
by the n-vector q and (n − m)-vector ẋ which
represents the system internal states.

4. ADAPTIVE NEURAL-FUZZY CONTROL
DESIGN

In this section, adaptive neural-fuzzy control
for mechanical systems with nonholonomic con-
straints subject to plant uncertainties and exter-
nal disturbances is considered.

Consider the constrained dynamic equation (9)
together with m independent nonholonomic con-
straints (10). For simplicity of design, the follow-
ing assumptions required through out this section.

Assumption 2. : The matrix RT (q)B(q) is of full
rank, which guarantees all n−m degrees of free-
dom can be (independently) actuated.

The above assumption always holds for a large
class of nonholonomic mechanical systems such
as nonholonomic Caplygin systems (which include
a vertical wheel rolling without slipping on a
plane surface, a mobile wheeled robot moving on a
horizontal plane, and a knife edge moving in point
contact on a plane surface, etc. In these systems,
the internal state ẋ(q) and variable x(q) possess
practical physical meanings.)

By appropriate selecting a set of (n−m) vector of
variables x(q) and ẋ(q), the control objective can
be specified as: given a desired xd and ẋd, deter-
mine a control law such that for any (q(0), q̇(0)) ∈
Ω then x(q) and ẋ asymptotically converge to a
manifold Ωnhd specified as

Ωnhd = {(q, q̇, λ)|x(q) = xd, q̇ = R(q)ẋd} (14)

The variable x(q) can be thought as (n − m)
“output equations” of the nonholonomic system.

Assumption 3. : The desired reference trajectory
xd(t) is assumed to be bounded and uniformly
continuous, and has bounded and uniformly con-
tinuous derivatives up to the second order.

In the following, we define ex = x−xd, ẋr = ẋd−
ρ1ex, s = ėx + ρ1ex, where ẋr is the reference
trajectory described in internal state space.

To facilitate the analysis of neural networks, the
GL matrix and its product operator introduced in
(Ge et al., 1998) are used. Denote the GL vectors

and matrices by {·}, and the GL product operator
by “•”. To avoid any possible confusion, [·] is used
to denote the conventional vector and matrix.

For controller design, define the following new
variables µ = Rs, ν = Rẋr. The time derivatives
of ν and σ are given by ν̇ = Ṙẋr + Rẍr, and
µ̇ = Ṙs + Rs̈.

Consider the control law given by

τ = (RT B)−1RT [D̂(q)ν̇ + Ĉ(q, q̇)ν + Ĝ(q)

−Kµµ−Kssgn(µ)] (15)

where the estimates (∗̂) required in (15) be pro-
vided by NF such that

D̂(q) = [{ŴD}T • {φ̂D}] (16)

Ĉ(q, q̇) = [{ŴC}T • {φ̂C}] (17)

Ĝ(q) = [{ŴG}T • {φ̂G}] (18)

and

D(q) = [{W ∗
D}T • {φ∗D}] + εD

C(q, q̇) = [{W ∗
C}T • {φ∗C}] + εC

G(q) = [{W ∗
G}T • {φ∗G}] + εG

where [{W ∗
D}, {φ∗D}], [{W ∗

C}, {φ∗C}] and [{W ∗
G},{φ∗G}] are the desired parameter and basis func-

tion pairs of the NF emulation of D(q), C(q, q̇) and
G(q) respectively; and εD, εC , εG are the collective
NF reconstruction errors respectively.

The system dynamics is rewritten as

RT DRṡ = RT Bτ −RT (Dν̇ + Cν + G)

−RT C2s (19)

Let
{ξDk

}= {ξDk1 ξDk2 . . . ξDkn
}

{ζDk
}= {ζDk1 ζDk2 . . . ζDkn

}
{ηDk

}= {ηDk1 ηDk2 . . . ηDkn
}

where ξDki
= φ̂Dki

−φ̂′Dki,cDki
ĉDki

−φ̂′Dki,σDki
σ̂Dki

,

ζDki
= φ̂′Dki,cDki

, and ηDki
= φ̂′Dki,σDki

.

Similarly, we have

{ξCk
}= {ξCk1 ξCk2 . . . ξCkn

}
{ζCk

}= {ζCk1 ζCk2 . . . ζCkn
}

{ηCk
}= {ηCk1 ηCk2 . . . ηCkn

}
{ξGk

}= {ξGk1 ξGk2 . . . ξGkn
}

{ζGk
}= {ζGk1 ζGk2 . . . ζGkn

}
{ηGk

}= {ηGk1 ηGk2 . . . ηGkn
}

where ξCki
= φ̂Cki

− φ̂′Cki,cCki
ĉCki

− φ̂′Cki,σCki
σ̂Cki

,

ζCki
= φ̂′Cki,cCki

, ηCki
= φ̂′Cki,σCki

, ξGki
= φ̂Gki

−



φ̂′Gki,cGki
ĉGki

− φ̂′Gki,σGki
σ̂Gki

, ζGki
= φ̂′Gki,cGki

,

and ηGki
= φ̂′Gki,σGki

.

Using the control law (15), the closed-loop system
error equation can be obtained

RT DRṡ

= RT ([{W̃D}T • {ξD} − {ŴD}T • {{ζD} • {c̃D}}
−{ŴD}T • {{ηD} • {σ̃D}}]ν̇ + [{W̃C}T • {ξC}
−{ŴC}T • {{ζC} • {c̃C}}
−{ŴC}T • {{ηC} • {σ̃C}}]ν + [{W̃G}T • {ξG}
−{ŴG}T • {{ζG • {c̃G}} −Kµµ + d− C2s

−{ŴG}T • {{ηG • {σ̃G}}]−Kssgn(µ)) (20)

where d = (εD + dD)ν̇ + (εC + dC)ν + εG + dG.

Theorem 1. : For the closed-loop system (20),
asymptotic stability, i.e., ex and ėx asymptotically
converge to zero, is achieved if Kσ is positive
definite, Ks = diag[Ksi], Ksi ≥ ||d|| and the
parameter adaptation laws are given by

˙̂
WDk

=−ΓDk
• {ξDk

}ν̇µk (21)
˙̂cDk

=−ΓcDk
• {{ζDk

}T • {ŴDk
}}ν̇µk (22)

˙̂σDk
=−ΓσDk

• {{ηDk
}T • {ŴDk

}}ν̇µk (23)
˙̂

WCk
=−ΓCk

• {ξCk
}νµk (24)

˙̂cCk
=−ΓcCk

• {{ζCk
}T • {ŴCk

}}νµk (25)
˙̂σCk

=−ΓσCk
• {{ηCk

}T • {ŴCk
}}νµk (26)

˙̂
WGk

=−ΓGk
• {ξGk

}µk (27)
˙̂cGk

=−ΓcGk
• {{ζGk

}T • {ŴGk
}}µk (28)

˙̂σGk
=−ΓσGk

• {{ηGk
}T • {ŴGk

}}µk (29)

where ΓDk
, ΓcDk

, ΓσDk
, ΓCk

, ΓcCk
, ΓσCk

, ΓGk
,

ΓcGk
, and ΓσGk

are dimensional compatible sym-
metric positive definite matrices; moreover, all the
closed-loop signals are bounded.

Proof:

Choose the Lyapunov function candidate

V =
1
2
sT RT DRs +

1
2

n∑

i=1

W̃T
Dk

Γ−1
Dk

W̃Dk

+
1
2

n∑

i=1

W̃T
Ck

Γ−1
Ck

W̃Ck
+

1
2

n∑

i=1

W̃T
Gk

Γ−1
Gk

W̃Gk

+
1
2

n∑

i=1

c̃T
Dk

Γ−1
cDk

c̃Dk
+

1
2

n∑

i=1

c̃T
Ck

Γ−1
cCk

c̃Ck

+
1
2

n∑

i=1

c̃T
Gk

Γ−1
cGk

c̃Gk
+

1
2

n∑

i=1

σ̃T
Dk

Γ−1
σDk

σ̃Dk

+
1
2

n∑

i=1

σ̃T
Ck

Γ−1
σCk

σ̃Ck
+

1
2

n∑

i=1

σ̃T
Gk

Γ−1
σGk

σ̃Gk
(30)

By virtue of equation (20), substituting the adap-
tation law (21)-(29) into the time derivative of V ,

and after some simple calculations using the GL
operator, yields

V̇ =−sT RT KµRs + µT d− µT Kssgn(µ) ≤ 0(31)

where the skew-symmetric property of Ḋ − 2C,
and ˙̃WDk

= ˙̂
WDk

, ˙̃WCk
= ˙̂

WCk
, ˙̃WGk

= ˙̂
WGk

,
˙̃cDk

= ˙̂cDk
, ˙̃cCk

= ˙̂cCk
, ˙̃cGk

= ˙̂cGk
, and ˙̃σDk

=
˙̂σDk

, ˙̃σCk
= ˙̂σCk

, ˙̃σGk
= ˙̂σGk

are used.

As V ≥ 0 and V̇ ≤ 0, V ∈ L∞. From the
definition of V , it follows that s is bounded and
W̃Dk

, W̃Ck
, W̃Gk

, c̃Dk
, c̃Ck

, c̃Gk
, σ̃Dk

, σ̃Ck
and σ̃Gk

are all bounded. Thus, we have all the estimates
ŴDk

, ŴCk
, ŴGk

, ĉDk
, ĉCk

, ĉGk
, σ̂Dk

, σ̂Ck
and σ̂Gk

are bounded. It can be obtained that ex, ėx ∈
Ln−m
∞ .

Integrating both sides of (31), we have
t∫

0

sT RT KσRs ≤ V (0)− V (t) ≤ V (0)

Thus, s ∈ Ln−m
2 . From (13), we can conclude ẍ ∈

Ln−m
∞ , which leads to q̈ ∈ Ln

∞. Since ẋ, ẍ ∈ Ln−m
∞

have been established before, we can conclude
that ṡ ∈ Ln−m

∞ . Now, with s ∈ Ln−m
2 , ṡ ∈ Ln−m

∞ ,
we can conclude that s asymptotically converge to
zero. Hence it can be concluded that ex, ėx → 0
as t →∞. Q.E.D.

5. SIMULATION RESULTS

A simplified model of a mobile wheeled robot
moving on a horizontal plane, constituted by a
rigid trolley equipped with nondeformable wheel,
as given in details in (Campion et al., 1991), is
used to verify the validity of the proposed control
approach.

The dynamic model can be expressed as (Campion
et al., 1991)

mẍ = λcosθ − 1
P

(τ1 + τ2)sinθ

mÿ = λsinθ +
1
P

(τ1 + τ2)cosθ

Iθ̈ =
L

P
(τ1 − τ2) (32)

where x, y are coordinates in an inertial frame,
θ is an orientation of the wheel with respect to
the inertial frame, m is the mass of the robot,
and I is its inertial moment around the vertical
axis, P is the radius of the wheels and 2L the
length of the front wheels, and τi, i = 1, 2 is the
torques provided by the motors. For simplicity, we
set P = L = 1.

The nonholonomic constraint is written as ẋcosθ+
ẏsinθ = 0. The matrix J(q) is therefore defined as
J(q) = [cosθ sinθ 0], where q = [x y θ ]T . The
“outputs” are chosen as x(q) = [y θ ]T .

In order to simulate, it can be easily derived
D(q) = diag[m, m, I], C(q, q̇) = 0 and G(q) = 0.



In the simulation, we assume the real parameter
m = 0.5, and I = 0.5. With the initial condition
q(0) = [0, 0.5, 0.785]T and q̇(0) = [0, 0, 0]T and
the desired manifold Ωnhd is chosen as Ωnhd =
{(q, q̇, λ)|x(q) = 0, q̇ = 0}. The proposed NF
control action is calculated by (15), and the input
of the NF approximator is given by z = [y, θ].
The following design parameters are chosen for the
simplest case in the simulation: each neural-fuzzy
approximator contains 25 nodes, with centers cl

evenly spanned in [−2, 2], the width σl = 0.5
and ŴD = 0. By Theorem 1, the control gain
Kµ is selected as Kσ = diag[1], ρ1 = 1. The
adaptation gain in adaptation law (21) is chosen
as ΓDk

= diag[0.5]. In the simulation, Ks is chosen
to be zero to show the robustness of the proposed
controller.

The results of the simulation are shown in Figs. 2-
3. Fig. 2 shows the responses, including y, θ, ẋ, ẏ
and θ̇, of the simulated nonholonomic constrained
robot. The torques exerted at the mobile robot
are given by Fig. 3. It can be seen that all
system states converge to the desired manifold
Ωnhd and all signals in closed-loop are bounded.
These results verify the validity of the proposed
algorithm.
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Fig. 2. Simulated nonholonomic system’s re-
sponses
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Fig. 3. Control torques of the simulated nonholo-
nomic system

6. CONCLUSION

In this paper, the problem of control of mechanical
systems with classical nonholonomic constraints
subject to dynamic uncertainties is considered. An
adaptive neural-fuzzy control algorithm has been
designed to drive the system motion converge to

the desired manifold. The proposed controllers are
non-regressor based and require no information
on the system dynamics. Simulation results have
shown the effectiveness of the proposed controller.
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