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1. INTRODUCTION

Fault Detection and Isolation (FDI) is currently
the subject of extensive researches. Two essen-
tially stages define the FDI: residual generation
and decision making. In this work, we concentrate
on the residual generation aspect.
A residual generator takes the measured signals as
input and gives a residual vector as output. This
residual vector has to satisfy several properties
which will be precisely defined in the sequel.
A systematic procedure carrying out to special ob-
server was proposed by Beard (Beard, 1971) and
Jones (Jones, 1973). Several years later a solution
to FDI problem was formulated by Massoumnia
(Massoumnia, 1986; Massoumnia et al., 1989) us-
ing a geometric approach.
In this paper, the main objective is to propose an-
other form of residual generator with good prop-
erties for fault decoupling. Moreover the multi-
fault problem can be considered by means of the
directional properties of the residual since each
component of the latter is only affected by one
fault and not by the others ones.
In this work, the residual generator is synthe-
sized according to input u, output y and its
derivatives which are not usually used. It is a
natural extension used in nonlinear control and

more precisely in input-output linearization tech-
niques (Isidori et al., 1981; Fossard and Normand-
Cyrot, 1995; Plestan and Glumineau, 1996; Frank
and Ding, 1997; Edelmayer et al., 1999).
This paper is organized as follows. At first, the
problem statement is briefly reviewed. The gener-
ators form and residual characteristics are speci-
fied. In section 3, another view of works of Mas-
soumnia is proposed. Section 4 shows the advan-
tage of the residual generator using derivatives
of measured signals. In Section 5, an academic
examples illustrate the results. Finally, in section
6, we conclude with some suggestions for future
works.

2. PROBLEM STATEMENT

This paper relies heavily on a few geometric con-
cepts. The notations and terminology are iden-
tical to (Massoumnia, 1986; Massoumnia et al.,
1989; Wonham, 1985) and are now quite standard.
The range of L is L. By S and S⊥, we denote
respectively the unobservable subspace and the
observable subspace. W(L) denotes the set of



all (C, A)-invariant subspaces containing the sub-
space L, and S(L) denotes the set of all (C, A)-
unobservability subspaces (u.o.s.) containing the
subspace L. Moreover W∗(L) denotes the sub-
space containing the infimal element of W(L). It
is such that W∗(L) = Wk+1(L) = Wk(L) with:

{

W0(L) = 0

Wk+1(L) = L + A(Wk(L) ∩ KerC)
(1)

In other words, W∗(L) is the minimal (C, A)-
invariant subspaces containing the subspace L.

S∗(L) is defined by the following sequence S∗(L) =
Sk+1(L) = Sk(L) with:

{

S0(L) = X

Sk+1(L) = W∗(L) + (A−1Sk(L)) ∩ KerC

(2)
In other words, S∗(L) is the minimal (C, A)-
unobservability subspaces containing the sub-
space L.
Assume that the LTI system is described by the
following state-space model:























ẋ = Ax + Bu +

r
∑

i=1

Limi

y = Cx +

q
∑

i=1

Jini

(3)

with x ∈ Rn, u ∈ Rm and y ∈ Rp are respectively
state, control input and output. It is assumed
that signals u and y are known (measured). We
refer to function mi and ni which are respectively
actuator and/or system faults and sensor faults.
It is now admitted (Massoumnia et al., 1989)
and (Park et al., 1994) that sensor faults can
be represented as pseudo-actuator faults. In this
paper, the model considered is the following:











ẋ = Ax + Bu +

k
∑

i=1

Limi

y = Cx

(4)

where unknown inputs m represent faults (ac-
tuators, systems and sensors) and matrices A,
B, C and Li have been appropriately modified
(compared to (3)). Using the disturbed system
(4), another definition is added: Γy,u denotes
the subspace in X such that each element is
equal (∀mi) to a linear combination of y, u

and their derivatives. For this notion, the au-
thors are inspired by (Kailath, 1980): p 84-90. It
generalizes the observability definition formulated
from nominal system. It is to be noticed that
(KerC)⊥ ⊆ Γy,u ⊆ S⊥.

Remark: The system described by A =

(

−1 0
1 1

)

,

B = L =
(

0 1
)T

and C =
(

0 1
)

is observable
(S⊥ = X ) and state x1 is not reconstructible since

Γy,u = Span
{

(

0 1
)T

}

6= X .

In this paper, we focus our attention on Funda-
mental Problem in Residual Generation (FPRG).
To solve this problem, at least k = dim(m) (see
(4)) residuals must be synthesized. Several char-
acteristics (5,6) have to be satisfied by residuals,
for i = {1, · · · , k}:

ri −→ 0, ∀(u, mj 6=i) (5)

ri 6= 0, with mi 6= 0 (6)

The residual vector is generated according to
filters. In (Massoumnia, 1986; Massoumnia et al.,
1989), necessary and sufficient conditions for the
solvability of the FPRG using a classical filter (7)
are given.

{

ż = (A + DC)z + Bu − Dy

r = H(Cz − y)
(7)

where DCz − Dy is called the output injection.
In section 3, existence conditions of a solution
solving the FPRG according to residuals gener-
ated by filter (7) are recalled. Another conditions
are also given and it is shown that these latter are
equivalent to Massoumnia’s conditions.
Based on filter form (8), another solution solving
FPRG is proposed in section 4. This solution is
not only no more restrictive conditions for fault
isolation but also better fault decoupling capabil-
ities.



























ż =
(

A + D
[

C CA · · · CA(n−1)
])

z

+Bu + E
[

u u(1) · · · u(n−2)
]

−D
[

y y(1) · · · y(n−1)
]

r = H(z − y)

(8)

It is to be noticed that the output injection form is
D

[

C CA · · · CA(n−1)
]

z+E
[

u u(1) · · · u(n−2)
]

−

D
[

y y(1) · · · y(n−1)
]

where measured signals deriva-
tives (input and output) are used.
If Γy,u is equal to X then all states xi (with ∀i ∈
{1 · · ·n}) can be explained by the output injection
part: E

[

u u(1) · · · u(n−2)
]

−D
[

y y(1) · · · y(n−1)
]

.

3. ANOTHER VIEW

Using the notations and definitions (recalled in
problem statement), Theorem 3.1 gives multi-
fault isolation conditions (see, RDDFP in
(Massoumnia, 1986) or Theorem 4 in (Massoumnia
et al., 1989)):

Theorem 3.1. FPRG has a solution if, and only if,

S∗
(

Li

)

∩ Li = 0, i ∈ {1, · · · , k} (9)

where Li =
∑

j 6=i Li.

The main purpose of this section is to propose
other isolation conditions without using the un-
observability subspace algorithm (S∗(·)).



3.1 Case of two faults

For sake of simplicity, let us assume, in this section
that only two faults can occur independently (i.e.
k=2 in (4)). In this case, the model is rewritten
as follows:

{

ẋ = Ax + Bu + L1m1 + L2m2

y = Cx
(10)

In this particular context, Theorem 3.1 implies
two conditions for fault isolation:

(i) S∗ (L2) ∩ L1 = 0

(ii) S∗ (L1) ∩ L2 = 0

(11)

The aim of this section is to propose equivalent
conditions to the vue of relation (11), using the
subspaces W (L) defined in the previous section.

(i) (W∗ (L2))
⊥
∩ (KerC)

⊥ * (W (L1))
⊥

(ii) (W∗ (L1))
⊥ ∩ (KerC)⊥ * (W (L2))

⊥
(12)

where W (L1) (resp. W (L2)) represents the (A +
DC)-invariant subspace containing L1 (resp. L2)
and D is chosen such that W∗ (L2) = inf (W (L2))
(resp. W∗ (L1) = inf (W (L1))).

Proposition 3.1. The following properties are equiv-
alent:

(i) S∗ (L2) ∩ L1 = 0

(ii) (W∗ (L2))
⊥
∩ (KerC)

⊥ * (W (L1))
⊥ (13)

Proof: First, note that we have:

(W∗ (L2))
⊥
∩ (KerC)

⊥ * (W (L1))
⊥

⇐⇒

W (L1) *
(

(W∗ (L2))
⊥
∩ (KerC)

⊥
)⊥

⇐⇒
W (L1) * W∗ (L2) + KerC

(14)

Two cases are studied:

1) L1 * KerC ⇐⇒ L1 * S
According to W∗ calculation (2), condition
(13)-(i) can be replaced with: W∗ (L2)∩L1 =
0.
At the same time, W (L1) * W∗ (L2) +
KerC is equivalent with the following test:
W (L1) * W∗ (L2).
Let us recall that L1 is a vector, thus to con-
sider W∗ (L2) ∩ L1 6= 0 ⇐⇒ L1 ⊆ W∗ (L2)
and since W∗ (L2) is (C, A)-invariant, it is
equivalent with W (L1) ⊆ W∗ (L2). More-
over W∗ (L2) ∩ L1 = 0 ⇐⇒ L1 * W∗ (L2),
but L1 ⊆ W∗ (L1) and then W (L1) *
W∗ (L2).
In this case the equivalence between the two
propositions (13)-(i) and (13)-(ii) is proven.

2) L1 ⊆ KerC
Let us recall that the unobservable space is
the greater A-invariant subspace containing
KerC (KerC∩Ker(CA)∩· · ·∩Ker(CAn−1)).
Let us introduce Ã = (A + DC) where D is
associated with the calculation of W∗ (L2).
Two cases are again studied.

2.1) ÃL1 * KerC ⇐⇒ L1 * S
As previously, since L1 is included in the
observable subspace, condition (13)-(i) can
be replaced with: W∗ (L2) ∩ L1 = 0.
At the same time, W (L1) * W∗ (L2)+KerC
is equivalent to following test: W (L1) *
W∗ (L2).
In this case, as it is previously shown, the two
propositions W∗ (L2)∩L1 = 0 ((13)-(i)) and
W (L1) * W∗ (L2) ((13)-(ii)) are equivalent.

2.2) ÃL1 ⊆ KerC
Two cases are studied and with a recursive
reasoning on Ã2L1, · · · , Ãn−1L1 there is still
the case Ãn−1L1 ⊆ KerC to study.

...

2· · · .2) Ãn−1L1 ⊆ KerC
Since ÃαL1 ⊆ KerC with α = {1 · · ·n −
1} it follows that L1 is unobservable (L1 ⊆
S). Easily, we can conclude that W (L1) ⊆
KerC ⇐⇒ W (L1) ⊆ W∗ (L2) + KerC and
S∗ (L2) ∩ L1 6= 0.
In this case, the two propositions (13)-(i) and
(13)-(ii) are also equivalent.

All the cases are considered according to a recur-
sive reasoning and (13)-(i) and (13)-(ii) are still
equivalent.

�

Therefore, according to proposition 3.1, condi-
tions (12) and (11) are equivalent. This consti-
tutes another view to solve the FPRG in the case
of two faults.

3.2 Generalisation to multiple faults

The existence conditions of a solution to FPRG
proposed in the case of two faults (12) can be
naturally extended to the case of multiple faults.

Theorem 3.2. FPRG has a solution if, and only if,

(

W∗
(

Li

))⊥
∩ (KerC)

⊥ * (W (Li))
⊥

,

i ∈ {1, · · · , k}
(15)

where Li =
∑

j 6=i Li.

With a proof similar to the above, the equivalence
between Theorem 3.1 and Theorem 3.2 can be
proved but it is not interesting to detail anymore.



4. PROPOSITIONS

In this section the main objectives are:

(M1) to explain the better capability of our propo-
sition for fault decoupling,

(M2) to prove that existence conditions of a solu-
tion solving the FPRG are no more restric-
tive.

These results are based on the original filter form
(i.e. (8)) where the output injection is close to
generalized output injection. This output injec-
tion is generally used in nonlinear feedback con-
trol (input-output linearization (Plestan and Glu-
mineau, 1996; Glumineau et al., 1996)).
Let us introduce two new subspaces:

• the
(

A + D
[

C CA · · · CA(n−1)
])

-invariant
subspace containing L denoted by Wg (L)

• W∗
g (L): the subspace containing the infi-

mal element of Wg(L) such that W∗
g (L) =

inf (Wg(L)) and satisfies W∗
g (L) = Wk+1

g (L) =

Wk
g (L) with:

{

W0
g (L) = 0

Wk+1
g (L) = L + A(Wk

g (L) ∩ Γ⊥
y,u)

(16)

Since Γ⊥
y,u ⊆ KerC, the following inclusions are

necessarily satisfied: W∗
g (L) ⊆ W∗ (L) and still

(W∗ (L))
⊥
⊆

(

W∗
g (L)

)⊥
.

Associated
(

W∗
g (L)

)⊥
with the part of state de-

coupling from L (fault), at least better decoupling
capacities of our method are obvious. Main objec-
tive (M1) is realized.

Based on the definition of subspaces Wg(·) and
W∗

g (·), the following theorem is proposed:

Theorem 4.1. FPRG has a solution if, and only if,

(

W∗
g

(

Li

))⊥
∩ (KerC)⊥ * (Wg (Li))

⊥

i ∈ {1, · · · , k}
(17)

where Li =
∑

j 6=i Li.

and the goal (M2) is reached with the proposi-
tion:

Proposition 4.1. Isolation conditions of Theorem
4.1 are no more restrictive than those proposed in
Theorem 3.2.

Proof: To prove that Theorem 4.1 conditions
are no more restrictive than Theorem 3.2 (or
equivalently Theorem 3.1), we focus on the k = i

case:

(i) W (Li) * W∗
(

Li

)

+ KerC

from Theorem 3.2

(ii) Wg (Li) * W∗
g

(

Li

)

+ KerC

from Theorem 4.1

(18)

Three cases are then studied:

1) Li ⊆ W∗
g

(

Li

)

in this case, Li is also included in W∗
(

Li

)

and thus two conditions (18)-(i) and (18)-(ii)
are not satisfied.

2) Li ⊆ W∗
(

Li

)

and Li * W∗
g

(

Li

)

in this case, condition (18)-(i) is not satisfied
whereas condition (18)-(ii) can be satisfied.
In this sense (18)-(ii) is at least less restric-
tive than the previous one.

3) Li * W∗
(

Li

)

Let us denote by D and Dg matrices associ-
ated with W∗

(

Li

)

and W∗
g

(

Li

)

, respectively

Ã = A + DC and
Ãg =

(

A + Dg

[

C CA · · · CA(n−1)
])

.
Let p1 · · · pn be a basis for X such that:
p1 · · · pk2 with k2 ∈ {1 · · ·n} is a basis of
W∗

(

Li

)

p1 · · · pk1 with k1 ∈ {1 · · ·k2} is a basis of
W∗

g

(

Li

)

.
All matrices are then rewritten in this base.
Let us now introduce the following matrices:

Ă =

(

Ă1 Ă2

Ă3 Ă4

)

(19)

with,

Ă1 =
















α1,1 · · · α1,k1 · · · · · · α1,k2

...
...

...
αk1,1 · · · αk1,k1 · · · · · · αk1,k2

...
...

...
αk2,1 · · · αk2,k1 · · · · · · αk2,k2

















(20)

and Ă2 and Ă4 are any matrix. It is to be
noticed that D and Dg are synthesized such

that Ã = Ă and Ã = Ăg respectively with:

Ă3 =






0 · · · 0 β1,k1+1 · · · β1,k2

...
...

...
...

0 · · · 0 βn−k2,k1+1 · · · βn−k2,k2







(21)

and all βi,j = 0 for D whereas αi,j = 0
(k1 ≤ i ≤ k2 and j ≤ k1) for Dg.
In the case actually studied
Li ⊆ Span{pk2+1, · · · , pn}, however as previ-
ously explained, D and Dg don’t affect char-

acteristics of matrices Ă2 and Ă4 but fault
propagation (Li, ĂLi, · · · , Ăn−1Li) can be
different for D and Dg.
Two cases are then studied:



3.1) W (Li) ⊆ Span{pk2+1, · · · , pn}
since matrix Ă4 is not changed for D and Dg

then W (Li) = Wg (Li). It is why, to satisfy
(18)-(i) is more difficult than (18)-(ii).

3.2) W (Li) * Span{pk2+1, · · · , pn}
Let us introduce Z.P the canonical projec-
tion of Z on P . According this notation,
W (Li) .{p1, · · · , pk2} ⊆ Wg (Li) .{p1, · · · , pk2}.
This inclusion is mainly due to the zero
in Ă1 (αi,j = 0 (k1 ≤ i ≤ k2 and
j ≤ k1)). The more important is that the
subspace resulting of the difference between
W (Li) .{p1, · · · , pk2} and Wg (Li) .{p1, · · · , pk2}
is necessarily included in KerC and brings no
facilities for conditions (18).

For all cases, condition (18)-(i) is at best equiv-
alent with (18)-(ii) and Proposition 4.1 is thus
satisfied.

�

5. EXAMPLES

To highlight the main results (M1) and (M2) of
our paper, we propose to study academic exem-
ples. Consider the system modelled by







































ẋ1 = −x1 + (u1 + m1)

ẋ2 = x1 − x2

ẋ3 = x1 − x3 + (u2 + m2)

ẋ4 = x2 − x4

y1 = x3

y2 = x4

(22)

m1 and m2 are faults to be detected and isolated.
In this case, they correspond to actuator faults.
We have:

KerC = Span

















1
0
0
0






,







0
1
0
0

















(23)

and the unobservable subspace: S = {0}.

5.1 Fault decoupling

To illustrate fault decoupling, we pose m2 = 0.
Using classical approach,

W∗(L1) = Span























1
0
0
0









,









−1
1
1
0























However, according to the following equalities,

y
(1)
1 = x

(1)
3 = x1 − x3 + m1 (24)

y
(1)
2 = x

(1)
4 = x2 − x4 =⇒ x2 = y

(1)
2 + y2 (25)

y
(2)
2 = x

(2)
4 = x1−2x2+x4 =⇒ x1 = y

(2)
2 +2y

(1)
2 +y2

(26)

subspaces spanned by
(

1 0 0 0
)⊥

and
(

0 1 0 0
)⊥

compose Γy,u = {0} and the minimal
(

A + D
[

C CA · · · CA(n−1)
])

-invariant subspaces
containing Li (i.e. W∗

g (Li) defined by (16)) are:

W∗
g (L1) = Span























1
0
0
0























In this last case, the dimension of the state part
decoupled from fault m1 equals dim((W∗

g (L1))
⊥) =

3 (see filter (31)) whereas, in the first case, equals
dim((W∗(L1))

⊥) = 2. The advantage of method
our proposed is then obvious (see (M1) section
4).

5.2 Fault isolation conditions

Consider now, m1 6= 0 and m2 6= 0. Using
algorithm defined by equation (2) we obtain:

S∗(L1) = Span

















1
0
0
0







,







0
1
1
0

















S∗(L2) = Span

















0
0
1
0

















(27)
Conditions of Theorem 3.1 are satisfied and faults
can then be isolated.
The minimal

(

A + D
[

C CA · · · CA(n−1)
])

-invariant subspaces containing Li (i.e. W∗
g (Li)

defined by (16)) are:

W∗

g (L1) = Span

















1
0
0
0

















W∗

g
(L2) = Span

















0
0
1
0

















Wg(L1) = Span

















1
0
0
0







,







0
1
1
0







,







0
0
0
1

















Wg(L2) = Span

















0
0
1
0

















(28)

and two no-inclusions are satisfied:
(

W∗
g (L1)

)⊥
∩ (KerC)

⊥
⊆ (Wg(L2))

⊥

(

W∗
g (L2)

)⊥
∩ (KerC)⊥ ⊆ (Wg(L1))

⊥
(29)

Since conditions of Theorem 4.1 are satisfied,
faults are isolable and using Theorem 3.1 (see



(M2) section 4) too.
To conclude the filter form is proposed:































ż1 = −z1 + u1

ż2 = z1 − z2

ż3 = z1 − z3 + u2

ż4 = z2 − z4

r1 = y4 − z4

(30)

where residual r1 −→ 0, ∀(u, m2) and r1 6=
0 if m1 6= 0 whereas,































ż1 = −z1 + u1

ż2 = z1 − z2

ż3 = −z3 + u2 + y
(2)
2 + 2y

(1)
2 + y2

ż4 = z2 − z4

r2 = y1 − z3

(31)

where residual r2 −→ 0, ∀(u, m1) and r2 6=
0 if m2 6= 0.

6. CONCLUSION

In this paper, the problem of fault residual gener-
ation is considered. In one hand, equivalent Mas-
soumnia’s results are explained. In other hand,
based on a new filter form with better fault
decoupling results, conditions for fault isolation
are proposed. Moreover it is shown that these
conditions are no more restrictive. Finally, an
example highlights these results. To answer ap-
plicability questions, the reader can refer to the
articles (Fliess and Sira-Ramirez, 2003; Fliess and
Sira-Ramirez, 2004) where some techniques stem-
ming from differential algebra allow to obtain
time derivatives of measured signals. In this work,
the convergence analysis is not considered but is
the future prospects. Results already obtained in
(Lohmiller and Slotine, 1998; Join et al., 2002) are
promising.
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