
EXECUTION CONTROL OF ROBOTIC TASKS

FOR MARINE SYSTEMS

Massimo Caccia, Gabriele Bruzzone ∗

∗ CNR-ISSIA Sez. di Genova

Via De Marini 6

16149 Genova

Italy

Abstract: The problem of controlling the execution of navigation, guidance and
control tasks of a mobile robot, reconfiguring their states according to the demands
of the human operator or automatic coordinator, is faced in this paper focusing
on the design and implementation of a Petri net based execution controller for
marine robotsCopyright c©2005 IFAC.

Keywords: Petri-nets, discrete-event systems, marine systems, supervision,
architectures.

1. INTRODUCTION

The concept of execution control as interface be-
tween the asynchronous, event-driven, decision
making and planning levels and the synchronous,
continuous time, functional execution level was
introduced and discussed in the work carried out
by CNRS-LAAS on architectures for autonomous
mobile robots (Alami et al., 1998), where the
role of the execution controller in handling the
conflicts between different functional modules and
maintaining a logical description of their oper-
ating states was pointed out. In particular, this
layer guarantees the safety of the system by check-
ing the commands sent to the functional level
preventing it from entering in an unconsistent
condition with respect to a model of desirable or
undesirable states (Ingrand and Py, 2002). The
execution control level is synchronous with the
underlying functional modules, in the sense that
it processes all the commands sent to and reports
coming back from them, and acts in guaranteed
real-time. The need for the pilot of an advanced
ROV of reconfiguring the set of active motion
estimation and control tasks according to the cur-
rent goal and environmental conditions motivated

the research on execution control in the field of
underwater robotics (Coletta et al., 2001). Indeed,
when the system is complex, it is impossible for
the human operator remembering and executing
in a few tenths of seconds relatively long sequences
of task activation and deactivation commands
in order to switch from different sets of active
tasks maintaining the system consistent. On the
other hand, embedding all the task dependencies
and conflicts, and the consequent sequences of
task activation and deactivation commands when
switching between different operating contexts, in
the software is not reliable as soon as the num-
ber of tasks increases. Research in the field of
ROVs focused on the definition of a set of rules,
governing the behaviour of the execution control
level, which can be derived by the analysis of
the hierarchical I/O relationships between tasks
and variables (the so called task-variable graph),
independently from the semantics of the specific
tasks. Since these rules can be easily translated in
constraints on the state of a generic finite state
machine representing the execution level, the no-
table results of (Yamalidou et al., 1996) in au-
tomatically generating a controlling net from the
marking of the original one, and the well-known



capabilities of Petri nets in modelling concurrency,
parallelism and resource contention, Petri nets
were used to represent the execution level as a
discrete event system. Results, including suitable
Petri net search algorithm for system reconfigura-
tion, are summarised in (Bruzzone et al., 2003),
while an examples of the use of Petri net for
mission control of marine systems is reported
in (Oliveira et al., 1998). This research pointed
out strong differences in controlling the execution
of estimate and control tasks. In particular, the
fundamental requirement of a monitoring-oriented
sensing and perception architecture, activating as
more as sensors and estimators is possible and
making available all the data processing results,
makes the part of the execution controller con-
cerning the motion estimation tasks basically a
free evoluting system, mainly conditioned by the
uncontrollable results of estimator inizializations.
On the other hand activation and deactivation
of control tasks can be executed instantaneously
without any initialization phase. This motivated
the separation of the execution control of motion
estimation and control tasks, producing, as a con-
sequence, a more effective capability in managing
the switch between different configurations of the
guidance and control system executing the same
high level function.

2. EXECUTION LEVEL

The Execution level embeds a set T of elemen-
tary tasks, i.e., software components capable of
performing specific motion estimation and control
functions, which communicate through variables,
i.e., shared memory used for task I/O. According
to their semantics, the set V of variables can
be divided in the distinct subsets of estimation
variables EV , containing the values measured by
sensors as well as the outputs of the filtering al-
gorithms, and control variables CV , representing
the references to be tracked by the control tasks.
For each task t ∈ T , the symbols I(t) and O(t)
denote the sets of input and output variables of
the task, and the symbols CI(t) , CO(t) , EI(t) ,
and EO(t) indicate the control input variables,
control output variables, estimation input vari-
ables, and estimation output variables, respec-
tively. Moreover, the symbol CT denotes the set

of control tasks, i.e., CT
4
= {t ∈ T : EO(t) = ∅} ,

and ET represents the set of estimation tasks,

i.e., ET
4
= {t ∈ T : EO(t) 6= ∅} .

2.1 DES task representation

From the point of view of its execution state, a
generic task can be running (R) or idle (I), and
the state transitions are caused by the operations

of activating (A) or deactivating (D) the task.
When the activation of a task may fail, as, for in-
stance, in the case of estimation tasks which may
sometimes converge too slowly (or not converging
at all), the init (In) state has to be introduced to
complete the task description. Depending on the
conclusion of the initialization phase, the success

(S) and fail (F) transitions lead the task in the
running and idle state respectively. It is worth
noting that these transitions are uncontrollable
(their triggering is function of the perceived data),
but observable. Petri net representation of tasks
is shown in Figure 1. Denoting with x (X) the

Fig. 1. Petri Net representation of tasks.

number of tokens in place X , the place invariants
x (R) + x (I) = 1 and x (R) + x (I) + x (In) = 1
hold in the case of not initialized and initialized
tasks respectively.

2.2 Properties and rules

The execution of complex missions requires that
the connections between tasks are dynamically es-
tablished according to mission events and require-
ments. Each task does not a priori know which
tasks will produce/consume its input/output vari-
ables, and suitable task activation and deactiva-
tion operations determine these connections at
any time instant. A set of run-time constraints,
linking the task I/O relationships to the structure
of the control and motion estimation architecture,
enable the verification of the correctness of any
task configuration, guaranteeing that fundamen-
tal properties of data consistency, from bottom

upward activation and hierarchical structure of
the control leg are complied. In particular, data
consistency is guaranteed by the property of no

concurrent writing stating that there cannot be
two or more running tasks sharing a common
output variable

∀v ∈ V ,
∑

t∈T :v∈O(t)

x (Rt) ≤ 1 (1)

The assumption that this property holds at any
time instant is the basic rule controlling the be-
haviour of the guidance and control system, while,
due to the need of distinguishing each estimate
variable for system monitoring purposes, it gets a



design constraint in the case of the motion estima-
tion system. The from bottom upward activation

of the execution level is guaranteed by the rules of
complete writing of consumed estimation variables

(2) and complete tracking of written control vari-

ables (3), stating that, at any time instant, each
used estimate must be generated by a running
task and all the computed control values must be
tracked.

∀v ∈ EV , ∀t ∈ T : v ∈ EI(t) (2)

x(It) +
∑

τ∈T :v∈EO(τ)

x(Rτ ) ≥ 1

∀v ∈ CV, ∀t ∈ CT : v ∈ CO(t) (3)

x(It) +
∑

τ∈T :v∈CI(τ)

x(Rτ ) ≥ 1

In addition to rule (3), the hierarchical nature of
the control architecture is established by the no

concurrent tracking property, which guarantees at
any time the uniqueness of the control strategy:

∀v ∈ CV,
∑

t∈CT :v∈CI(t)

x(Rt) ≤ 1 (4)

It is worth noting that rules (1) and (4) represent
mutual exclusion constraints between tasks, while
rules (2) and (3) express the dependency of task
t from the set of tasks τ .

3. EXECUTION CONTROL

As shown in section 2.2 the execution of the
estimate tasks is controlled only by the design
constraint (1) and rule (2), while control tasks,
as well as switch between estimation variables

(Bruzzone et al., 2003), do not involve any ini-
tialization phase. In addition, the requirement
of having, at any time, a representation of the
robot and environment state as wider as possible
forces the execution controller to automatically
activate any estimate task as soon as it is pos-
sible, while control tasks must be activated only
to satisfy specific requests of the decision layer.
Thus, the different behaviour in the management
of control and estimate tasks suggested the im-
plementation of a Motion Estimation Execution

Controller (MEEC) supervising the free evolu-
tion, i.e. complete activation, of the sensing and
perception system and executing external com-
mands establishing some task has to be idle, and
of a Guidance and Control Execution Controller

(GCEC), managing, through Petri net control and
reconfiguration, mission control commands and
sensing failure events. The Petri net based GCEC
will be discussed in the following.

3.1 Controlling net generation

Since rules (1)-(4) on the behavior of the exe-
cution level are expressed as predicates on the
Petri net marking, the Petri net can be modified
such that it enforces the requested predicates.
According the approach proposed and discussed in
(Yamalidou et al., 1996), this can be done adding
a controlling net, obtaining a resulting net of the
form (the classical matrix notation for Petri nets
is used):

[

x
xc

]

k+1

=

[

x
xc

]

k

+

[

D
Dc

]

f
k

, (5)

where the vectors x and D denote the state and
the transition matrix of the original net, while xc

and Dc denote the state and the transition matrix
of the controlling net, respectively. Details on the
application of the above-mentioned approach to
the an execution level structure including estimate
tasks too can be found in (Bruzzone et al., 2002).
Here, it is worth noting that information about
the conflicts and dependencies among the tasks
is completely embedded by the controlling net.
In order to simplify the reconfiguration of the
net, it is quite important to minimise the size of
the controlling net, i.e. the number of introduced
constraints on the marking of the net. This can
be done on the basis of some simple observations.

(1) Given two sets of constraints
∑

t∈A

xt ≤ 1

and
∑

t∈B

xt ≤ 1 such that B ⊆ A then the

constraint on places B is redundant. This can
be, for instance, the case of mutex constraints
between tasks originated by the application
of rules (1) and (4) to different variables.

(2) Defined a set of consumers C and a set of
producers P of a resource r, if any consumer
is active then at least one producer must be
active, i.e.

∑

p∈P

x (Rp) ≥ min

{

1,
∑

c∈C

x (Rc)

}

(6)

In the case
∑

c∈C

x (Rc) ≤ 1 the constraint (6)

can be written as
∑

c∈C

x (Ic) +
∑

p∈P

x (Rp) ≥ card (C) (7)

and if
∑

p∈P

x (Rp) ≤ 1 the constraint on

the mutual exclusion of the consumers is
redundant. Considering the sets of produc-
ers {τ ∈ T : v ∈ CI(τ)} and of consumers
{τ ∈ T : v ∈ CO(τ)}, this property can be
immediately used to group multiple instances



of task dependency constraints originated by
applying rule (3) to control variables gen-
erated by more than one task. The fact
that the number of running tasks for each
set is ≤ 1 is guaranteed by rules (1) and
(4). As far as rule (2) is concerned, the set
of producers {τ ∈ T : v ∈ EO(τ)} is guaran-
teed to be of cardinality one by the de-
sign constraint (1), while constraints can
be grouped only for the subsets M of
the consumers {τ ∈ T : v ∈ EI(τ)} such that
∑

m∈M

x (Rm) ≤ 1.

(3) Given two multiple dependency constraints
of the type consumer-producer denoted by
subscripts a and b respectively, if Ca ⊂ Cb

and Pb ⊂ Pa then constraint a is redundant.

3.2 Petri net reconfiguration

The execution control module is triggered by
events, i.e. external commands on the desired
state of some tasks. A goal is defined as the
desired presence of a token in a subset of places
of the original net. Denoting with G the set of the
indexes of the desired places, the corresponding

goal vector x∗ : x∗
g =

{

1, g ∈ G
0, g /∈ G

is satisfied by

any marking of the net x such that
{

x. ∧ x∗ = x∗

x ≥ 0
(8)

where .∧ is the element-wise AND operator and
the condition x ≥ 0 represents the admissibility,
i.e. non negative marking, of the Petri net config-
uration x. Unlike the case discussed in (Caccia
et al., 2001), the reduction of the problem to
controlling the execution of guidance and control
tasks, which have no initialization phase, allows
the assumption that all the transitions are in-
stantaneous and can be fired simultaneously. This
simplifies the work of the execution controller,
that, when a goal xg is established, has to find
a firing vector f

g
such that x0 + Df

g
= xg , being

x0 the actual state of the net, without taking any
care of the consistency of the net with respect to
the transition firing order. Thus, a simple search
algorithm based on the boolean backward spread-
ing of the utility throgh Petri net transitions and
controlling places is proposed. At first, given a
Petri net with state x0, all the predecessor tran-
sitions of the marked places of the original net

are inhibited from firing (state-inhibition). Then
the algorithm is initialized by constructing a set
of useful transitions consisting of the predeces-
sors of the goal places. It is worth noting that,
since the goal places are in the original net their
correspondence with the predecessor transitions is

biunique. At the generic step, given a set of useful
transitions Tu and the associated firing vector

f (Tu) : f
t

=

{

1, t ∈ Tu

0, t /∈ Tu
leading the net to the

state x = x0 + Df (Tu), a set of useful controlling
places is defined as Pu = {p : xp < 0, p > nr},
where nr denotes the size of the original net. In
practice, the empty places, where the presence of
a token is needed to allow the firing of a set of
transitions Tu, are considered useful for Tu. Of
course, if x0+Df (Tu) ≥ 0 then Tu is an admissible
solution. If transitions can be seen as a logical
AND in the backward propagation of utility, each
useful place p ∈ Pu behaves as logical OR between
its np not state-inhibited predecessor transitions
Tu(p) =

{

tp1 . . . tpn(p)

}

. Thus, the set of useful
places Pu generates all the possible combinations
of useful transitions T new

u = {t1, . . . , tm} with
t1 ∈ Tu(p1), . . . , tm ∈ Tu(pm) and m = card(Pu).
Each combination of useful transitions is then ap-
plied to the Petri net iterating the algorithm. If a
combination of useful transitions T new

u is equal to
the previous set Tu, this means that the backward
propagation of utility has encountered a deadlock
condition.Since the above-proposed algorithms al-
lows to find all the possible solutions, i.e. sets
of firing transitions satisfying the goal, that is
compatible with the typical complexity of guid-
ance and control systems of marine robots and the
state-of-the-art computing power, the problem is
to define some suitable critera to select the, in
some sense, optimal solution. As shown in section
4, the basic criterium of minimising the number of
fired transitions can force the deactivation of high
level guidance functions which could be executed
by alternative set of tasks involving, to be consis-
tently activated, the firing of a higher number of
transitions. The execution controller has to take
into account, in some way, the level of the tasks
in the guidance and control hierarchy. Defining
a task chain of order n an ordered list of tasks
Cn = {τn, . . . , τ1} such that ∀j ∈ [1, n − 1], ∃v ∈
CV : v ∈ CO(τj+1)∧v ∈ CI(τj), a task τ is of order
N , when N is the maximum order of the task
chains led by τ . The order of a solution is defined
as the maximum order of the tasks whose state
is modified by its transitions. Thus, among the
solutions of minimum order, the one constituted
by the minimum number of transitions is selected.

4. EXPERIMENTAL RESULTS

The above described methodology for controlling
the execution of a robot execution level repre-
sented through Petri nets, which is the natural
evolution of a system already implemented in the
control system of the Romeo ROV, is part of the
Free Robot Architecture project, currently under
development at CNR-ISSIA Sez. di Genova, rep-



resenting the temptative of developing an archi-
tecture for the rapid prototyping, design, imple-
mentation and running of robotic control systems
completely based on free operating systems and
software tools. In this framework a gcpetrinetgen-

erator, generating a controlled Petri net from a
description of the guidance and control system
based on a task-variable graph, and a gcexecution-

controller, controlling the execution of the guid-
ance and control tasks, have been implemented
in the Linux 2.6.6 operating system using the
GNU C++ 3.2.3 compiler and run on a 3.06 GHz
laptop. In the following an example of managing
the guidance and control tasks of a marine robot
on the horizontal plane is examined, pointing out
the system capabilities in dealing with alternative
possibilities of executing high order guidance func-
tions. The I/O relationships between the guidance
and control tasks and variables of the steering
system of a marine vehicle are shown in the task-
variable graph of Figure 2, where x, psi, r and Tr
denote position, heading, yaw rate and yaw torque
respectively, and the ∗s indicate the reference val-
ues. In particular, Figure 2 represents different

Fig. 2. Task-Variable Graph representation of the
execution level.

guidance and control strategies of steering a vehi-
cle to reach a desired position x∗

OP , assuming that
the vehicle surge speed is controlled by some other
module. Mutual exclusion constraints guarantee-
ing the consistency of the data and the uniqueness
of the adopted control strategy are visible by the
reader at a glance, and are summarised in table 1
as computed by gcpetrinetgenerator. In this case
there are no redundant mutual exclusion con-
straints. The constraints, computed by gcpetrinet-

generator by applying the compact consumer-

producer form of rules (2) and (3) discussed in
section 3.1, observation (2), are reported in table

Table 1. Mutual exclusion constraints

R(1): no concurrent writing

conflicting tasks on variable
TrRefOp xCntrl psiCntrl rCntrl TrRef

rRefOp xGuid psiGuid rRef

psiRefOp xRoute psiRef

R(4): no concurrent tracking

conflicting tasks on variable
xRoute xGuid xCntrl xRef

psiGuid psiCntrl psiRef

Rule (1) and (4) MUTEX constraints

TrRefOp xCntrl psiCntrl rCntrl

rRefOp xGuid psiGuid

psiRefOp xRoute

xRoute xGuid xCntrl

psiGuid psiCntrl

Table 2. Task dependence constraints.

R(2): complete writing of consumed estimates

on variable consumer (Idle) producer (Run)
r psiCntrl rCntrl rSensor

x xRoute xGuid xC-

ntrl

xSensor

psi xCntrl psiCntrl psiSensor

psi xGuid psiGuid psiSensor

psi xGuid xCntrl psiSensor

psi psiGuid psiCntrl psiSensor

R(3): complete tracking of written controls

on variable consumer (Idle) producer (Run)
TrRef TrRefOp xCntrl

psiCntrl rCntrl

TrActuator

rRef rRefOp xGuid

psiGuid

rCntrl

xRef xRefOp xRoute xGuid xC-

ntrl

psiRef psiRefOp xRoute psiGuid psiCntrl

Redundant MUTEX constraints of consumers
TrRefOp xCntrl psiCntrl rCntrl

rRefOp xGuid psiGuid

psiRefOp xRoute

xRoute xGuid xCntrl

psiGuid psiCntrl

Table 3. Constraint summary.

Rule (1) and (4) MUTEX constraints
—

Rule (2) and (3) dependence constraints

consumer (Idle) producer (Running)
psiCntrl rCntrl rSensor

xRoute xGuid xCntrl xSensor

xCntrl psiCntrl psiSensor

xGuid psiGuid psiSensor

xGuid xCntrl psiSensor

psiGuid psiCntrl psiSensor

TrRefOp xCntrl psiCntrl

rCntrl

TrActuator

rRefOp xGuid psiGuid rCntrl

xRefOp xRoute xGuid xCntrl

psiRefOp xRoute psiGuid psiCntrl

2. In particular, the constraints on the variable psi
are grouped according the subsets of the above-
computed MUTEX constraints. It is worth noting
how the constraints on the mutual exclusion are
redundant, reducing the constraints originated by
the application of rules (1) to (4) to those reported
in table 3. Once built the controlled Petri net,



Table 4. xRefOp task activation.

Goal: xRefOp RUNNING solutions: 4

Solution 1 : order 4, size 8

xSensor ACTIVATE

psiSensor ACTIVATE

rSensor ACTIVATE

xRefOp ACTIVATE

xRoute ACTIVATE

psiGuid ACTIVATE

rCntrl ACTIVATE

TrActuator ACTIVATE

Solution 2 : order 4, size 5

xSensor ACTIVATE

psiSensor ACTIVATE

xRefOp ACTIVATE

xCntrl ACTIVATE

TrActuator ACTIVATE

Solution 3 : order 4, size 7

xSensor ACTIVATE

psiSensor ACTIVATE

rSensor ACTIVATE

xRefOp ACTIVATE

xRoute ACTIVATE

psiCntrl ACTIVATE

TrActuator ACTIVATE

Solution 4 : order 4, size 7

xSensor ACTIVATE

psiSensor ACTIVATE

rSensor ACTIVATE

xRefOp ACTIVATE

xGuid ACTIVATE

rCntrl ACTIVATE

TrActuator ACTIVATE

Selected solution: 2 elapsed time: 7.146 ms

Running Tasks
xSensor psiSensor xRefOp xCntrl TrActuator

the execution controller can process the operator
commands according to the rules defined in 3.2.
At first the gcexecutioncontroller is commanded
to activate the tracking of the desired position,
i.e. to put the xRefOp task in the running state,
starting from a complete idle state. As shown
in table 4, the execution controller individuated
all the possible ways of executing the desired
command, and selected the one of minimum size.
Indeed, all the computed solutions were of order
4, imposed by firing a transition of task xRefOp.
Once applied the selected solution, the execution
controller is asked to deactivate the xCntrl task.
In this case, as shown in table 5, the solution with
the minimum number of firing transitions would
deactivate any position tracking function. This
system capability is maintained active thanks to
the minimum order criterium, introduced at the
end of section 3.2, which forces the selection of
solution 4 involving the swith between position
control and guidance. The capability of handling
the switch between different control strategies
without inserting any switch transition explicitely
in the Petri net is the main advance of this re-
search with respect to previous work summarised
in (Bruzzone et al., 2003).

Table 5. xCntrl task deactivation.

Goal: xCntrl IDLE solutions: 4

Solution 1 : order 3, size 5

rSensor ACTIVATE

xRoute ACTIVATE

xCntrl DEACTIVATE

psiGuid ACTIVATE

rCntrl ACTIVATE

Solution 2 : order 4, size 2

xRefOp DEACTIVATE

xCntrl DEACTIVATE

Solution 3 : order 3, size 4

rSensor ACTIVATE

xRoute ACTIVATE

xCntrl DEACTIVATE

psiCntrl ACTIVATE

Solution 4 : order 2, size 4

rSensor ACTIVATE

xGuid ACTIVATE

xCntrl DEACTIVATE

rCntrl ACTIVATE

Selected solution: 4 elapsed time: 6.045 ms

Running Tasks
xSensor psiSensor rSensor xRefOp xGuid rCntrl TrAc-

tuator

REFERENCES

Alami, R., R. Chatila, S. Fleury, M. Ghallab
and F. Ingrand (1998). An architecture for
autonomy. International Journal of Robotic

Research 17(4), 315–337.
Bruzzone, Ga., M. Caccia, P. Coletta and

G. Veruggio (2002). A reconfigurable control
architecture for mobile robots. In: Proc. of

MCCA 2002. Lisboa, Portugal.
Bruzzone, Ga., M. Caccia, P. Coletta and

G. Veruggio (2003). Execution control and
reconfiguration of navigation, guidance and
control tasks for UUVs. In: Proc. of MCMC

2003. Girona, Spain. pp. 137–142.
Caccia, M., P. Coletta, G. Bruzzone and G. Verug-

gio (2001). Petri net-based execution control
of robotic tasks. In: Proc. of MCCA 2001.
Dubrovnik, Croatia.

Coletta, P., R. Bono, G. Bruzzone, M. Caccia
and G. Veruggio (2001). Execution control of
the NGC tasks for ROVs. In: Proc. of 2001

IEEE International Conference on Robotics

and Automation. pp. 2369–2374.
Ingrand, F. and F. Py (2002). An execution con-

trol system for autonomous robots. In: Proc.

of ICRA ’02. Vol. 2. pp. 1333–1338.
Oliveira, P., A. Pascoal, V. Silva and C. Sil-

vestre (1998). The mission control system of
MARIUS AUV: System design, implementa-
tion, and tests at sea. Int. J. on Sys. Sci-

ence - Special Issue on Underwater Robotics

29(10), 1065–1080.
Yamalidou, K., J. Moody, J. Lemmon and P.J.

Antsaklis (1996). Feedback control of Petri
nets based on place invariants. Automatica

32(1), 15–28.


