

A DIFFERENTIAL EVOLUTION ALGORITHM FOR SIMPLE ASSEMBLY
LINE BALANCING

Andreas C. Nearchou

Department of Business Administration,
University of Patras 26 500 Rio-Patras, Greece,

E-mail: nearchou@upatras.gr, Fax: +30 2610-996.350

Abstract: This paper describes the application of differential evolution algorithm (DEA)
to the simple assembly line balancing problem (SALBP). DEA is an evolutionary
algorithm similar to a real-coded genetic algorithm for global optimization over
continues spaces. The paper is concerned with SALBP type-1 whose objective is to
minimize the number of workstations required to manufacture a product in an assembly
line within a given fixed cycle time. Extensive experimental work over public
benchmarks test problems show the effectiveness of the proposed approach. Copyright ©
2005 IFAC

Key words: assembly line balancing, differential evolution, meta-heuristics,
manufacturing optimization.

1. INTRODUCTION

Production planning and control is associated with a
large number of complex optimization problems.
Most of these problems are of combinatorial nature
and have been proved to be NP-complete, i.e., there
is no exact algorithm that can solve them in
polynomial time unless it is proved that P=NP. The
combinatorial nature of these problems encourages
the use of modern meta-heuristics techniques such
as evolutionary algorithms, simulated annealing,
tabu-search, etc.

The assembly line balancing problem (ALBP) is a
decision problem arising when an assembly line has
to be configured or redesigned. The problem
consists of determining the optimal partitioning
(balancing) of the assembly work among the
workstations while optimizing one or more
objectives without violating the restrictions imposed
on the line (Baybars, 1986, Scholl, 1999). The

simple assembly line balancing problem (SALBP) is
a basic version of the general problem and has
captured the research interest for the last four
decades. Two formulation types are commonly used
with SALBP: (a) SALBP-1 which attempts to
minimize the number of stations for a given fixed
cycle time, and (b) SALBP-2 which attempts to
minimize the cycle time of the line for a given
number of stations. The former type is used when a
new assembly line has to be installed in the shop
floor, while the latter type is used in an existing
assembly line when changes in the production
process and manufacturing requirements occur.

Any variant of the ALBP is known to be NP-
complete combinatorial problem, which implies that
the right way to proceed is through the use of
heuristic techniques. A large number of exact and
heuristic techniques for the SALBP-1 are available
in the literature. Exact algorithms are mostly based
on the branch and bound method and the dynamic

mailto:nearchou@upatras.gr

programming approach. Some of the most powerful
branch and bound procedures are the FABLE

(Johnson, 1988), EUREKA (Hoffmann, 1992), and
SALOME-1 (Scholl and Klein, 1997) with the latter

being the most effective of all (Scholl, 1999).
Recently, some researchers turned their attention to
meta-heuristics techniques such as tabu-search
(Scholl and Voβ, 1996), simulated annealing
(Suresh and Sahu, 1994) and genetic algorithms
(GAs) (Anderson and Ferris, 1994, Kim, et
al.,1996). However, in respect to other sequencing
and scheduling optimization problems little attention
has been paid to the application of GAs to ALBPs.

In this paper the potential of the differential
evolution algorithm (DEA) for the solution of the
SALBP-1 is investigated. DEA is an evolutionary
algorithm very similar to a real-coded genetic
algorithm, which has been recently applied with
high success to solve various complex numerical
optimization problems (Storn and Price, 1997).

2. THE SALBP-1

Following the analysis given in (Baybars, 1986,
Scholl, 1999) the SALBP-1 can be stated as follows:

• An assembly line consists of workstations
arranged along a conveyor belt or a similar
materials handling equipment. Let S={1,…,m} the
set of workstations..

• Manufacturing a single product on the assembly
line requires the partitioning of the total assembly
work into a set of elementary operations called
tasks. Let V={1,…n} the set of tasks.

• Each task j (j∈V) is performed on exactly one
workstation and requires a deterministic

processing time tj. Let tsum the sum of all task
times.

• The assembly line is associated with a cycle time
denoting the maximum (or average) processing
time available for each work cycle. Each station
can complete its assigned tasks within the
specified cycle time.

• The tasks are partially ordered by precedence
relations. That is, precedence constraints between
the tasks occur and must not be violated.

• The objective is to minimize the number of
workstations subject to the given cycle time and
the precedence constraints of the tasks.

Usually, ALBPs are modeled through the use of
precedence graphs. Each node in the graph
corresponds to a specific task, while an edge joining
two nodes represents the precedence relation
between the corresponding tasks. Figure 1 illustrates
an example of a precedence graph for an 8-tasks
ALBP having processing times between 3 and 17
time units. The numbers inside the nodes of the
graph correspond to the task labels, and those
outside the nodes to the processing times. Therefore,
task 1 has a processing time equal to 11 time units,
task 2 a processing time equal to 17 time units, etc.
The precedence constraints for example, for task 6
defines that, this task must proceed after the
completion of tasks 3 and 4 (direct predecessors),
and tasks 1 and 2 (indirect predecessors). While,
task 6 must be completed before its direct (or
indirect) successors, which is task 8.

1 2

3

4

5

6

7 8

11 17

5

9 8

12

10 3

Precedence Graph

task-1 task-2 task-4 task-3 task-6 task-5 task-7 task-8

Station 1 Station 2

Assembly :Line Cycle Time=20

Station 3 Station 4 Station 5

(a)

(b)

Fig.1 An example of 8-tasks ALBP: (a) the precedence graph. (b) Assembly line corresponding to the feasible
line balance solution (1 2 4 3 6 5 7 8).

3. DIFFERENTIAL EVOLUTION FOR THE
SALBP-1

Differential evolution (DE) is an evolutionary
algorithm very similar to a real-coded genetic
algorithm (GA). The differences rely on the way the
mechanisms of mutation and crossover are
performed over the floating-point vectors
(chromosomes). The most distinct feature of DE is
that it mutates vectors by adding weighted, random
vector differentials to them. As with all evolutionary
algorithms, DE starts by generating a population of
real-valued n-dimensional vectors whose initial
parameter values are chosen randomly from within
user-defined bounds. This population undergoes
evolution in a form of natural selection. In each
generation, the operators of selection, mutation, and
crossover are applied on the entire population in
order to produce new, ‘better’ populations with
higher ‘quality’ individuals. Actually, in every
generation, each vector (chromosome) of the
population becomes a target vector and crossovers
with a mutant vector in order to produce a trial
vector. Each mutant vector is generated, by adding
the weighted difference between two randomly
selected population vectors to a third vector. The
best (that with the lowest cost) between the target
and the trial vector survives into the next generation.
The evolutionary process terminates after a number
of generations and the structure of the best vector
found so far is postulated as the definite solution to
the actual optimization problem. The basic structure
of DE algorithm is shown in figure 2, details about
DE and the way it operates can be found in the
pioneered work of (Storn and Price, 1997).

Procedure Differential_Evolution
begin

Generate randomly a population Φ of Np
real-coded vectors;

Evaluate (Φ);
while termination condition not satisfied do
begin

 for j=1 to Np do
 begin
 Select the next target vector Xj from Φ;
 Choose randomly 3 vectors Xa, Xb, Xc
 from Φ; // a≠b≠c≠j //
 Generate a mutant vector Vj according
 to the relation Vj=Xa+F.(Xb-Xc);
 Crossover the mutant and the target
 vector to generate a trial vector Uj;
 Evaluate Uj;
 if COST(Uj) < COST(Xj) then
 Replace Xj with Uj;

endfor
Save best-so-far vector to X*

endwhile
Return X*

end
Fig. 2: The general body of DE algorithm.

3.1 Encoding mechanism for the SALBP.

The natural coding for sequencing and scheduling
problems including SALBP is permutation vectors,
i.e., strings with integers. Therefore, a solution to the
SALBP (a phenotype) is a sequence of tasks with
each task represented by an integer number. When
this sequence of tasks does not break the precedence
constraints the solution is feasible. Then, the tasks
are allocated into workstations (according to their
order in the solution string) such that the sum of
their processing times in each workstation does not
exceed the cycle time. This scheme is demonstrated
in Fig. 1.(b) for the 8-task SALBP with precedence
graph shown in Fig.1(a). A cycle time equal to 20
time units was assumed. A feasible assembly
balancing solution for this example is (1 2 4 3 6 5 7
8) which results to five workstations in the assembly
line.

3.2 Decoding mechanism.

DE works with floating-point vectors. This means
that an appropriate mapping is needed from the
genotypic state-level (chromosomes) to the
phenotypic level (actual assembly balancing
solutions). Random-keys proposed by (Bean, 1994)
is the only published representation mechanism used
with floating-point chromosomes on combinatorial
optimization problems. We found this scheme
performing rather poor in the context of a DEA and
for this reason we implemented a new more
effective representation scheme. This scheme called
the Sub-Range coding scheme works as in the
following:

• For a SALBP with n tasks, divide the range

[1…n] into n equal sub-ranges and save the
upper bounds of each of the sub-ranges in the
array SR=[1/n, 2/n, 3/n, …,n/n]T (SR stands for
Sub-Ranges).

• Build the phenotype of a specific chromosome
according to the sub-range in which each
specific gene’s value belongs to.

• Check and repair if needed the phenotype so
that not to contain redundant task labels.

For example, assuming a 5-task SALBP let the
genotype, g = (0.23, 0.82, 0.03, 0.47, 0.62). Then the
array SR has the form

TSR]00.8,1. 0.6, 0.4, 0.2,[= . The 1st gene in g
has the value 0.23, i.e., lies in the 2nd sub-range
(0.2<0.23≤0.4), and thus the corresponding
phenotype becomes (2 _ _ _ _). The 2nd gene
(=0.82) lies in the 5th sub-range (0.8<0.82≤1.0), and
the phenotype becomes (2 5 _ _ _), and so on.
Finally, the phenotype p corresponding to
chromosome g is p=(2 5 1 3 4). Which means that
the order the tasks are to be executed is, task 2,
followed by task 5, followed by task 1, etc.

3.3 Repairing the phenotype so that to satisfy the
precedence constraints.

When the order of the tasks in the generated
phenotype does not break the precedence constraints
(see section 2), then this sequence corresponds to a
feasible solution. Otherwise, the solution is
infeasible and must be repaired. To repair infeasible
solutions we use the following simple yet effective
procedure: Note that, as we experimentally
observed, it is not necessary to repair all the
members in the entire population but only a small
portion. In particular, when 5% of the repaired
individuals replace their infeasible original
structures is enough.

Procedure Repair_Phenotype
begin

for i=1 to n-1 do begin
 A=p[i];
 for j=i+1 to n do begin
 B=p[[j];
 if task-B is a direct or indirect predecessor
 of tsk-A then
 Swap(p[i], p[j]); Swap(g[i],g[j]); A=B;

endif
 endfor

endfor
end

3.4 Local improvement

Two schemes were used to improve the performance
of the DEA: (a) A local search heuristic is applied
on the population best solution. This heuristic works
as follows: Find the tasks with no predecessors.
Insert these tasks to the head of the task-sequence.
Generate and check all the possible permutations of
these tasks. Always keep track for the feasibility of
the solution. The current best is only replaced when
a more robust solution has been found. (b) If the
diversity of the population becomes too low, then
regenerate randomly a portion of its entire
individuals..

4. COMPUTATIONAL RESULTS

To demonstrate the effectiveness of the proposed
DEA we present computational results obtained on a
set of public benchmark test problems found in the
literature. The benchmarks are available through the
Web at the location http://www.assembly-line-
balancing.de/ Here we report the results obtained
over the data set proposed by (Talbot et al., 1986).
This data set contains 64 test instances varying from
7 tasks to 111 tasks.

Table 1 Experimental results on Talbot et al. data
set.

Problem n CT m* mDE tcpu

Mertens 7 6 6 5 0.0
7 5 4 0.0
8 5 3 0.0

10 3 2 0.0
15 2 6 0.0
18 2 5 0.0

Bowman 8 20 5 5 0.0
Mansoor 11 48 4 3 0.0

62 3 2 2.2
94 2 2 0.0

Jaeschke 9 6 8 8 0.0
7 7 7 0.0
8 6 6 0.0

10 4 4 0.0
18 3 3 0.0

Jackson 11 7 8 8 0.0
9 6 6 0.0

10 5 5 0.6
13 4 4 0.0
14 4 4 0.0
21 3 3 0.0

Mitchell 21 14 8 8 3.3
15 8 8 0.0
21 5 5 0.5
26 5 5 0.0
35 3 3 6.3
39 3 3 0.0

In the experiments we used as objective the
minimization of the line efficiency CTm

tsumE ×= ,
where m is the number of workstations and CT the
cycle time. The DEA was run with the following
values of the control parameters: population size=10
individuals, crossover rate=0.4, mutation scale
factor F=0.3, maximum number of
generations=100×n (n=number of tasks).

Table 1 displays the results obtained by the DEA on
the above data sets. The table provides the following
information: the problem name, the number of tasks
(n), the cycle time (CT), the optimal number of
workstation (m*), the generated by the DEA number
of workstations (mDE) and the actual CPU time
spent in sec. All the experiments were carried out on
a Pentium II-MMX PC running at 333MHz.

http://www.assembly-line-balancing.de/
http://www.assembly-line-balancing.de/

Table 1 (continue)

Problem n CT m* mDE tcpu
Heskiaoff 28 138 8 8 7.9

 205 5 5 0.0
 216 5 5 0.0
 256 4 4 0.0
 324 4 4 0.0
 342 3 3 2.9

Sawyer 30 25 14 14 1.1
 27 13 13 1.1
 30 12 12 3.3
 36 10 10 1.1
 41 8 8 5.0
 54 7 7 0.0
 75 5 5 1.1

Kilbridge 45 57 10 10 0.0
 79 7 7 0.0
 92 6 6 0.0
 110 6 6 0.0
 138 4 4 0.6
 184 3 3 1.1

Tonge 70 176 21 22 6.6
 364 10 10 8.2
 410 9 9 2.7
 468 8 8 0.0
 527 7 7 1.1

Arcus1 83 5048 16 16 1.1
 5853 14 14 0.5
 6842 12 12 0.0
 7571 11 11 0.0
 8412 10 10 0.0
 8898 9 9 1.7
 10816 8 8 0.0

Arcus2 111 5755 27 28 6.0
 8847 18 19 6.4
 10027 16 16 0.8
 10743 15 15 11.3
 11378 14 14 7.3
 17067 9 9 39.5

A summary of these results is displayed in Table 2.
In particular, the table illustrates: (a) the number of
the instances for which the optimum solution was
found (nopt), (b) the average relative deviation from
the existing optimum in percentage (av.rel%), (c)
the maximum relative deviation from the existing
optimum in percentage (max.rel%), and (d) the
average CPU-time in seconds (av.cpu).

Table 2. A summary of the results obtained by DEA

nopt av.rel% max.rel% av.cpu
61 0.2 5.6 2.0

As one can see from Table 2 the DEA was able to
find the optimum solution in 61 out the total 64 test
instances which is a result as good as the one
produce by the well known branch and bound
method EUREKA (Hoffmann 1992). DEA is quite
fast, it needed 2 sec of processing time in average to
reach the optimum. It is underlined that the plethora
of the exact and heuristic algorithms used to solve
the SALBP (including the famous FABLE,
EURECA, SALOME-1) are in fact problem-
depended and have no (or at least a limited) other
known applicability. From the other side, the
proposed DEA can be used with only minor changes
to solve many other sequencing and scheduling
problems that follows the permutation property.

5. CONCLUSIONS

The use of a differential evolution (DE) algorithm to
solve the SALBP-1 was investigated in this paper.
Computational experiments were carried out over
public benchmark problems. The results obtained
are very promising reporting a high quality
performance for the DE.

ACKNOWLEDGMENTS

This work is integrated to I-PROMS NOE.

REFERENCES

Anderson E.J. and Ferris M.C. (1994). Genetic

algorithms for combinatorial optimization: the
assembly line balancing problem. ORSA
Journal on Computing, 6, 161-173.

Baybars I. (1986), A survey of exact algorithms for
the simple assembly line balancing problem,
Management Science, 32, 909-932.

Bean J. (1994), Genetics and random keys for
sequencing and optimization, ORSA Journal on
Computing, 6 (2), 154-160.

Chiang W.-C. (1998), The application of a tabu
search metaheuristic to the assembly line
balancing problem, Annals of Operations
Research, 77, 209-227.

Erel E. and Sarin S. (1998), A survey of the
assembly line balancing procedures, Production
Planning & Control, 9 (5), 414-434.

Hoffmann T.R. (1992), EUREKA: A hybrid system
for assembly line balancing, Management
Science, 38, 39-47. Johnson R.V. (1988),

Optimally balancing large assembly lines with
“FABLE”, Management Science, 34, 240-253.

Kim Y.K., Kim Y.JU. and Kim Y..(1996), Genetic
algorithms for assembly line balancing with
various objectives, Computers and Industrial
Engineering, 30 (3), 397-409.

Scholl A. (1999), Balancing and sequencing of
assembly lines. Physica-Verlag publ., Germany.

Scholl A. and Klein R. (1997), SALOME: A
biderectional branch and bound procedure for
assembly line balancing, INFORMS Journal on
Computing, 9, 319-334.

Scholl A. and Voβ S. (1996), Simple assembly line
balancing – Heuristic approaches, Journal of
Heuristics, 2, 217-244.

Storn R. and Price K. (1997). Differential Evolution
–A simple and efficient heuristic for global
optimization over continues spaces, Journal
Global Optimization, 11, 241-354.

Suresh G. and Sahu S. (1994), Stochastic assembly
line balancing using simulated annealing, Int.
Journal of Production Research, 32, 1801-1810.

Talbot F.B., Patterson J.H., Gehrlein W.V. (1986),
A comparative evaluation of heuristic line
balancing techniques, Management Science, 32,
430-454.

	Andreas C. Nearchou
	Problem
	mDE
	mDE

