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Abstract: This paper presents a new supervisory control scheme, which is based
on a control-relevant switching logic. Unlike most of the existing switching
methods considering only estimator performance, the proposed scheme takes both
estimator and controller performance into account. As an index to the controller
performance, an iISS (integral-Input-to-State Stability) Lyapunov function is
employed; it is ensured that the Lyapunov function satisfies a certain inequality.
This Lyapunov-based switching is then coupled to the state-dependent dwell-time
switching developed recently, and the state of the uncertain plant is shown to
converge asymptotically.Copyright c©2005 IFAC.
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1. INTRODUCTION

Supervisory control employs logic-based switching
for adaptation, instead of continuous tuning of
parameters as in conventional adaptive control.
This type of switching-based supervisory control
scheme consists of the following subsystems: an
uncertain plant to be controlled, a bank of esti-
mators, a bank of controllers, a performance mon-
itoring signal generator, and a switching logic. See
(Morse, 1996; Hespanha and Morse, 1999; Naren-
dra and Xiang, 2000; Liberzon et al., 2001; Hes-
panha et al., 2002; Hespanha et al., 2003b; De
Persis et al., 2004) for a general structure of su-
pervisory control.

Scale independent hysteresis and dwell-time meth-
ods are representative of the switching logic for su-
pervisory control; see (Middleton et al., 1988; Hes-
panha and Morse, 1999; Hespanha et al., 2002;
Hespanha et al., 2003a) for the former, and

(Morse, 1996; Borrelli et al., 1999; De Persis et
al., 2004; Kim et al., 2004b; Kim et al., 2004a) for
the latter. Switching algorithms of both the types
are based only on the estimator performance. On
the other hand, Lyapunov functions are employed
in such switching methods as in (Angeli and
Mosca, 2003; Angeli and Mosca, 2004); in these
methods, however, an exhaustive search type of
algorithm is used, and no estimation performance
is considered.

In this paper, we present a new switching logic,
which takes both control and estimation perfor-
mance into account. At every sampling instant,
we search for a model corresponding to the small-
est monitoring signal. We then decide whether
to switch to the resulting model or not by com-
paring the current value of the iISS (integral-
Input-to-State Stability) Lyapunov function with
its prospective value that would result from the
switching; if a certain inequality condition is sat-



isfied, switching is allowed. We first prove asymp-
totic convergence of the state of the uncertain
plant under the assumption of persistent switch-
ing. To deal with the situation where switching
stops in a finite time since the switching condi-
tion is never satisfied after that time, we further
employ a state-dependent dwell-time algorithm
together, and force switching to take place every
now and then. Note that the dwell-time algorithm
devised here is slightly different from the recent
ones in (De Persis et al., 2004; Kim et al., 2004a).
Finally we show that asymptotic convergence is
ensured, without assuming persistent switching,
by the proposed supervisory control scheme re-
sulting from the combination of the Lyapunov-
function-based switching and the state-dependent
dwell-time switching.

2. SUPERVISORY CONTROL

The supervisory control architecture under con-
sideration is depicted in Fig. 1. For more details
of the general structure of supervisory control, see
(Morse, 1996; Hespanha and Morse, 1999; Liber-
zon et al., 2001; Hespanha et al., 2002; De Persis et
al., 2004). As seen in Fig. 1, the overall structure
is similar to that of conventional adaptive control.
However, the difference is that the adaptation is
carried out via switching in the supervisory con-
trol. This is in sharp contrast with conventional
adaptive control in which adaptation is based on
continuous tuning.
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Fig. 1. Supervisory control architecture

2.1 The uncertain plant and the multi-estimator

The block P in Figure 1 is the uncertain plant to
be controlled, and is described by

x(k + 1) = fp∗ (x(k), u(k)) (1)

where x ∈ R
n is the state, and u ∈ R

m the control
input. It is assumed that fp∗ is unknown but is a
member of a known set {fp : p ∈ P} with P being
the index set; in other words, p∗ is an unknown
member of the known index set P. For simplicity,
P is assumed to be finite. The multi-estimator E
is a bank of estimators; the estimator for the p-th
model is written as

xp(k + 1) = AE(xp(k)− x(k)) + fp(x(k), u(k)) (2)

where AE is a Hurwitz matrix. The estimation
error is defined by

ep(k) = xp(k)− x(k), p ∈ P. (3)

Note that the error dynamics associated with the
correct model is given by

ep∗ (k + 1) = AEep∗ (k). (4)

Therefore, ep∗(k) decays exponentially, i.e.

‖ep∗ (k)‖ ≤ C1ν
∗k (5)

where C1 > 0 and ν∗ = max |λ(AE)| with λ(·)
denoting the eigenvalues.

2.2 The multi-controller

The multi-controller C is assumed to be of the
form

up(k) = kp(x(k)). (6)

We now write, in terms of the p-th model and the
estimation error, the uncertain plant as follows:

x(k + 1) = fp(x(k), u(k))− (ep(k + 1)−AEep(k))

=: fp(x(k), u(k))− dp(k). (7)

The closed-loop consisting of the control law (6)
using the p-th model and the plant (7) is referred
to as the injected system, and is written as

x(k + 1) = fp(x(k), kp(x(k)))− dp(k)

=:Ap(x(k), dp(k)). (8)

The multi-controller is assumed to be such that
the injected system (8) is iISS (integral Input-to-
State Stable) when dp is considered the external
input.

Assumption 1. For each p ∈ P, there exist
αp, γp ∈ K∞, βp ∈ KL such that

αp(‖x(k)‖) ≤ βp(‖x(0)‖, k) +

k−1
∑

i=0

γp(‖d(i)‖). (9)

As discussed in (Angeli, 1999; Sontag, 1998), this
iISS property is equivalent to the existence of an
iISS Lyapunov function Vp : R

n → R≥0 such that,
for αp1, αp2, γp ∈ K∞ and a positive function ρp,
Vp satisfies

αp1(‖x‖) ≤ Vp(x) ≤ αp2(‖x‖), (10)

and

Vp(Ap(x, dp))−Vp(x) ≤ −ρp(‖x‖)+γp(‖dp‖). (11)

In view of the inequality in (5), we also make the
following assumption.

Assumption 2. There exists a positive constant
η∗ ∈ (0, 1) such that

γp∗(‖ep∗ (k)‖) ≤ C2η
∗k (12)

where C2 is a positive constant.

Note that Assumption 2 is guaranteed to hold if
γp∗ is a polynomial owing to (5).



2.3 The performance monitoring signal generator

The performance monitoring signal µp associated
with each p ∈ P is defined by

µp(k) = ηµp(k − 1) + γp(‖ep(k)‖) (13)

with η ∈ (η∗, 1), and γp defined in Assumption 1.
Note that the input to the monitoring signal gen-
erator, i.e., γp(‖ep(k)‖) relates to an exponentially

weighted version of
∑k

i=0 γp(‖ep(i)‖) in the iISS
characterization (9) for the injected system (8).
To see this, define

µ̄p(k) = µ̄p(k − 1) + η−kγp(‖ep(k)‖)

=

k
∑

i=0

η−iγp(‖ep(i)‖) (14)

Then we have

µ̄p(k) = η−kµp(k),

argmin
p∈P

µp(k) = argmin
p∈P

µ̄p(k). (15)

Smallness of a monitoring signal implies that the
controller designed using the corresponding model
may provide satisfactory performance.

The switching logic S places in the feedback loop
the controller designed using the model from an
estimator corresponding to the smallest monitor-
ing signal; the next section focuses on the switch-
ing logic proposed in this paper.

3. CONTROL-RELEVANT SWITCHING

The output of the switching logic is denoted by
σ(k) ∈ P, the value of which is the index of
the model selected by the switching logic at time
k. Here we discuss how to select this piecewise
constant signal.

3.1 Switching using Lyapunov functions

We present a new switching logic using the iISS
Lyapunov functions in (10) and (11). The pro-
posed algorithm is referred to as SLF , and is given
as follows:

Algorithm SLF :

1. Initialize σ(k); initialize s(k) := 0
2. Find the best model

q := argmin
p∈P

µ̄p(k) (16)

3. If σ(k) = q, then s(k) := 0
else if

Vq(x(k))− Vσ(x(k)) ≤ θ s(k) (θ < 1) (17)

then σ(k) := q and s(k) := 0

4. Compute and apply the control

u(k) := uσ(k)

5. s(k + 1) := s(k) + ρσ(‖x(k)‖)
6. Go to step 2 at the next time (k := k + 1).

Switching is allowed to take place in SLF when
two conditions are met: firstly there should be
a better model leading to the minimum value of
the monitoring signal, and secondly the inequality
in (17) should hold. In other words, switching is
not allowed even when there is a better model, if
use of this new model increases the value of the
Lyapunov function in such a way that violates
the condition given in (17). Checking the two
conditions implies that both estimator and control
performance is considered in SLF . As result of
employing the switching logic SLF , we have the
following:

Theorem 1. Consider the supervisory control sys-
tem consisting of the plant (1), the multi-estimator
(2), the multi-controller (6), the performance
monitoring signal generator (13), and the switch-
ing logic SLF . Suppose that Assumption 1 holds
and therefore the inequalities in (10) and (11) are
satisfied. Then, for all k > k0, we have

V (x(k))− V (x(k0))

≤

k−1
∑

l=k0

[

−(1−θ)ρσ(l)(‖x(l)‖)+γσ(l)(‖dσ(l)(l)‖)
]

, (18)

where V (x(k)) = Vσ(k)(x(k)).

Proof: This theorem follows in a straightforward
manner from the inequalities in (11) and (17), and
thus the detailed procedure is not given here. ¥

Remark 2. As Theorem 1 shows, the switching
condition given in (17) is used to guarantee the
inequality in (18). However, the inequality in (18)
alone does not lead to stability since γσ(‖dσ(k)‖)
may not be summable. As is shown in the next
section, if Assumption 2 holds, and if switching
persists, then (18) results in convergence of the
state x(k) to zero.

To deal with the situation where switching stops
in a finite time since (17) is never satisfied after
that time, we further employ a state-dependent
dwell-time algorithm together so as to force
switching to take place every now and then.

3.2 Combining SLF with dwell-time switching

A dwell time is a lower bound for the difference
between any consecutive switching instants; in
other words, switching is allowed after waiting for
the dwell time. For nonlinear systems, the dwell



time needs to depend on the state: hence the name
‘state-dependent dwell-time switching’ (De Persis
et al., 2004; Kim et al., 2004a). Here we slightly
modify the state-dependent dwell-time algorithm
developed in (Kim et al., 2004b; Kim et al., 2004a)
in order to facilitate the combination with our
switching logic proposed above. For the dwell-time
switching to be referred to as SD, we first make
the following assumption.

Assumption 3. The injected system in (8) is lo-
cally exponentially stable when dp = 0. In other
words, for each p ∈ P, there exist a function
Wp(x) : R

n → R≥0, and positive real numbers
a1, a2, a3 and s̄ such that for ‖x‖ ≤ s̄

a1‖x‖
2 ≤Wp(x) ≤ a2‖x‖

2, (19)

Wp(Ap(x, 0))−Wp(x) ≤ −a3‖x‖
2. (20)

As there are two switching logics involved, we use
two subscripts for switching times to clarify which
algorithm causes the switching; Let ki,j denote
the switching instant which is due to the j-th
switching by SLF in a row after the i-th switching
by SD.

We now present SD, i.e. the modified dwell-time
algorithm. Define first the function τ∆(·) as the
smallest integer satisfying

βp(‖x(ki,j)‖, τ∆(‖x(ki,j)‖)) ≤
1

2
αp(

1

ζ
‖x(ki,0‖)) (21)

where ζ > 2. The state-dependent dwell-time
function is then given by

τD(r) ≥

{

τ∆(r), r ≥ r̄

max

{

logλ
a1

a2
, τ∆(r̄)

}

, r < r̄
(22)

where r̄ is such that

s̄ = α−1(2β(r̄, 0)), (23)

λ ∈ [
√

1− a3

a2

, 1), and a1, a2, a3 and s̄ are as in

Assumption 2.

The two switching logics SLF and SD are em-
ployed together in the proposed supervisory con-
trol scheme; as a result, switching takes place
whichever logic allows, thereby leading to more
active switching without destroying stability as is
shown in the next section. The proposed control-
relevant switching logic is referred to as SLF ∪SD,
and is depicted in Fig. 2.

Remark 3. In SD, switching is not allowed during
the dwell time even when there is a better model.
Hence the proposed method can be viewed as
an improved version of the dwell-time algorithm
in that more frequent switching, i.e. more active
adaptation is achieved.
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Fig. 2. The proposed switching logic SLF ∪ SD

3.3 Stability of the proposed supervisory control
system

Here we prove the closed-loop stability of the
proposed supervisory control system. Denote first
the value of the switching signal σ on [ki,j , ki,j+1)
by pi,j , i.e.

σ(ki,j) = σ(ki,j + 1) = · · · = σ(ki,j+1 − 1) = pi,j .

Regarding the multi-estimator, we first have the
following lemma.

Lemma 4. Suppose that Assumption 2, i.e. the
inequality in (12) holds. Then there exist a finite
switching time k∗ and a set P∗ ⊂ P containing p∗

such that
1. for any switching time ki,j > k∗, σ(ki,j) ∈ P

∗,
2. for σ(k) ∈ P∗

∞
∑

k=k0

γσ(k)(‖eσ(k)(k)‖)<∞,

∞
∑

k=k0

γσ(k)(‖dσ(k)(k)‖)<∞.

(24)

Proof: It follows from the inequality in (12) and
the definition of µ̄p(k) in (14) that

lim
k→∞

µ̄p∗ (k) <∞. (25)

The theorem then results from this inequality;
the detailed procedure closely parallels that of the
corresponding lemma given in (Morse, 1996), and
therefore is not given here. ¥

Theorem 5. Consider the supervisory control sys-
tem consisting of the plant (1), the multi-estimator
(2), the multi-controller (6), the performance
monitoring signal generator (13), and the switch-
ing logic SLF . Suppose that Assumptions 1 and 2
hold, and that switching takes place persistently.
Then, the state of the uncertain plant converges
to zero.

Proof. This theorem follows directly from (18) in
Theorem 1 and (24) in Lemma 4. ¥



The persistent switching condition for asymptotic
convergence in Theorem 1 can be removed by
combining the control-relevant switching SLF and
the modified dwell-dwell time switching SD, i.e.,
by employing SLF ∪ SD as follows:

Theorem 6. Consider the supervisory control sys-
tem consisting of the plant (1), the multi-estimator
(2), the multi-controller (6), the performance
monitoring signal generator (13), and the switch-
ing logic SLF ∪ SD. Suppose that Assumptions 1,
2, and 3 hold. Then, the state of the uncertain
plant converges to zero.

Proof. Note that persistent switching results from
SD. If switching persistently takes place only due
to either SLF or SD, then asymptotic convergence
results from either Theorem 5 above or from
(Kim et al., 2004a). Hence,we consider only the
case where both SLF and SD become persistently
active.

In view of (24) in Lemma 4, for any ε > 0, there
exists l∗ satisfying

∞
∑

i=kl∗,0

γσ((‖dσ(i)‖) ≤
1

2
ασ(

ε

ζ
). (26)

Suppose that l ≥ l∗ and ‖x(kl,0)‖ ≥ ε. Then,
letting kl,Ml

denote the last switching instant due
to SLF before kl+1,0, we have

ασ(‖x(k)‖)≤βσ(‖x(kl,Ml
)‖, k − kl,Ml

) +

k−1
∑

j=kl,Ml

γσ((‖dσ(j)‖)

for kl,Ml
+τD(‖x(kl,Ml

)‖) ≤ k ≤ kl+1,0. It then
follows from the inequalities in (9), (21), and (26)
that

‖x(k)‖ ≤ α−1σ

(

2βσ(‖x(kl,Ml
)‖, k − kl,Ml

)

)

+α−1σ

(

2

k−1
∑

j=kl,Ml

γσ((‖dσ(i)‖)

)

≤
1

ζ
· ‖x(kl,0)‖+

1

ζ
· ε

≤
1

ζ
· ‖x(kl,0)‖+

1

ζ
· ‖x(kl,0)‖ =

2

ζ
· ‖x(kl,0)‖.

This, in turn, results in the existence of an index
l∗∗ ≥ l∗ such that ‖x(km,0)‖ < ε for allm ≥ l∗∗, as
assuming ‖x(km+1,0)‖ ≥ ε leads to the following
contradiction

ε≤‖x(km+1,0)‖≤
1

ζ
‖x(km,0)‖+

1

ζ
ε <

2

ζ
ε.

Hence
lim
l→∞

‖x(kl,0)‖ = 0.

Now consider the values of the state at switching
instants by SLF . From equations (10) and (18),
we have for k ∈ (kl,0, kl+1,0)

ασ(‖x(k)‖) ≤ V (x(k))

≤

[

Vσ(x(kl,0))−(1−θ)

k−1
∑

j=kl,0

ρσ(‖x(j)‖)

]

+

k−1
∑

j=kl,0

γσ((‖dσ(j)‖).

This leads to

‖x(k)‖ ≤ α−1σ

(

2

[

Vσ(x(kl,0))−(1−θ)

k−1
∑

j=kl,0

ρσ(‖x(j)‖)

])

+ α−1σ

(

2

k−1
∑

j=kl,0

γσ((‖dσ(i)‖)

)

≤ αM

(

2VM (x(kl,0))−2(1−θ)

k−1
∑

j=kl,0

ρσ(‖x(j)‖)

)

+ αM

(

2

k−1
∑

j=kl,0

γσ((‖dσ(i)‖)

)

≤ αM

(

2VM (x(kl,0))

)

+ αM

(

2

k−1
∑

j=kl,0

‖dσ(j)‖

)

where

αM (r) :=max
σ∈P

α−1σ (r) and VM (r) :=max
σ∈P

{Vσ(r)}.

Now define ε1 such that αM (2VM (ε1)) ≤
1
2ε. Then

there exist indices i∗1 and i∗2 such that ‖x(kl,0)‖ <

ε1 for all l > i∗1 and
∑∞

τ=k ‖dσ(τ)(τ)‖ <

αM (2VM (ε1)) for all k > ki∗
2
,0. Hence, for all

l > max{i∗1, i
∗
2} and k > kl,

‖x(k)‖ ≤ αM (2VM (x(kl,0))) +

∞
∑

τ=ki∗
2

,0

‖dσ(τ)(τ)‖

≤ αM (2VM (ε1)) + αM (2VM (ε1))

≤
ε

2
+

ε

2
= ε.

This implies that the sequence of the state at all
switching instants converges to zero. ¥

4. CONCLUSION

This paper presents a control-relevant switching
logic using iISS Lyapunov functions. Unlike most
of the existing switching logics, the proposed
switching logic considers both estimator and con-
troller performance. The switching logic using the
Lyapunov functions is combined with a modified
version of the state-dependent dwell-time switch-
ing to ensure persistent switching. It is shown that
the state of the supervisory control system with
the proposed switching logic converges to zero.
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