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Abstract: In this game two players act in the class of mixed strategies and the third
player acts in the class of pure strategies. The suggested approach for building
dynamics uses the principle of non-decrease of players’ payoffs, various behavior
types for players and some special procedure of using Nash equilibria in auxiliary
games. Cooperative variant of this procedure is proposed. As an example, three-
person repeated game of Prisoner’s dilemma type is considered.
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1. INTRODUCTION

There are various approach to constructing dy-
namics in repeated games (see e.g. (Maynard Smith,
1982); (Hofbauer and Sigmund, 1988), (Friedman,
1991), (Tarasyev, 1994)). The suggested approach
is based on the theory of positional differen-
tial games ((Krasovskii and Subbotin, 1988),
(Krasovskii, 1985)) and, more specifically, on
nonzero-sum branch of this theory (Kleimenov,
1993). For repeated bimatrix 2x2 games this
approach was proposed in (Kleimenov, 1998),
(Kleimenov and Kryazhimskii, 1998), (Kleimenov,
2000). Using the principle of non-decrease of play-
ers’ payoffs, various behavior types for players and
some special procedure based on Nash equilibria
in auxiliary bimatrix games is characteristic for
the approach.
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Noncooperative variant of a repeated three-person
game with two pure strategies for each player
was studied in (Kleimenov, 2004). It was assumed
there that two players use mixed strategies and
the third player uses pure strategies only.

In present paper cooperative variant of repeated
three-person game with finite number pure strate-
gies for each player is considered. As in (Kleimenov,
2004) it is assumed that two players use mixed
strategies and the third player uses pure strategies
only.

The paper is organized as follows. Section 2 con-
tains notations. Cooperative variant of dynamics
is described in Section 3. Description of various
behavior types of players is given in Section 4.
Trajectories generated by the proposed algorithm
are described in Section 5 for a game of Prisoner’s
dilemma type. Numerical illustrations are given in
Section 6.



2. REPEATED THREE-PERSON GAME

The following static three-person game lies in
the basis of the considered repeated game. The
player 1 (P1) has l strategies numbered 1, . . . , l,
player 2 (P2) hasm strategies numbered 1, . . . ,m,
and player 3 (P3) has n strategies numbered
1, . . . , n. The values fijk, gijk and hijk are payoffs
to P1, P2 and P3, respectively, for a strategy triple
(i, j, k), where i ∈ L = {1, . . . , l}, j ∈ M =
{1, . . . ,m}, and k ∈ N = {1, . . . , n}.

Let the players choose their strategies sequentially
in rounds 1, 2, . . .. Assume, that in each round
P1 and P2 act in the class of mixed strategies.
A collection p = (p1, p2, . . . , pl), where pi ≥ 0,
∑l

i=1
pi = 1 is a mixed strategy of P1, and a

collection q = (q1, q2, . . . , qm), where qj ≥ 0,
∑m

j=1
qj = 1 is a mixed strategy of P2. So,

the (l − 1)-dimensional simplex Sl−1 and (m− 1)-
dimensional simplex Sm−1 are the sets of mixed
strategies of P1 and P2, respectively. These mixed
strategies can be realized physically, if P1 and
P2 represent large groups of identical agents or
populations. Indeed, p1, p2,...,pl can be interpreted
as shares of all agents in the first group, who play
the first strategy, the second one,. . . , the l-th one,
respectively. Assume also that P3 uses only pure
strategies from the set N .

Let the set S = Sl−1 × Sm−1 × N be called the
state space of the repeated game. Elements of S
will be called states. The expected payoffs (briefly,
the payoffs) to the P1, P2 and P3 at a state
(pt, qt, kt) ∈ S are defined by

f (pt, qt, kt) =
l
∑

i=1

m
∑

j=1

pi,tqj,tfijkt
,

g (pt, qt, kt) =
l
∑

i=1

m
∑

j=1

pi,tqj,tgijkt
, (1)

h (pt, qt, kt) =
l
∑

i=1

m
∑

j=1

pi,tqj,thijkt
,

where pi,t, qj,t are the components of the vectors
pt, qt.

3. COOPERATIVE DYNAMICS

The suggested approach to building dynamics in
repeated three-person games is characterized by
the following two features. Firstly, it is based on
the ideology of guaranteed approach used in the
positional differential game theory ((Krasovskii
and Subbotin, 1988), (Krasovskii, 1985)). This
ideology is expressed here in the principle of non-
decrease of guaranteed results for all players along
solution trajectories. Secondly, some special pro-
cedure based on Nash equlibria in some auxiliary
static games (Kleimenov, 1998) is used.

Assume that in each round t the players observe
the current state (pt, qt, kt) and choose a state
(

pt+1, qt+1, kt+1

)

for the next round taking into
account the following restriction

(

pt+1, qt+1

)

∈ Uα,β (pt, qt) =

{(p, q) ∈ Sl−1 × Sm−1 : |pi,t − pi| ≤ α, (2)

|qj,t − qj | ≤ β, i = 1, ..., l, j = 1, ...,m}

Here α and β are positive, sufficiently small num-
bers. The smallness of α and β means that the
inner structure of the groups of interacting agents
evolves slowly enough. It should be noted that
the strategy kt+1 can be chosen from the set N
arbitrarily.

In the paper the transition (pt, qt, kt) =⇒
(

pt+1, qt+1, kt+1

)

will be realized following the
principle of non-decrease of players’ payoffs during
the game. There are many variants of such a
transition. The proposed approach is based on
using Nash equilibria in auxiliary bimatrix game
(Kleimenov, 1998, Kleimenov and Kryazhimskii,
1998).

Let (pt, qt, kt) be a current state in the repeated
game. By fixing k∗t+1 ∈ N the following problems
are formulated.

Problem 1. Find a pair (p1, q1) maximizing the
function f

(

pt, qt, k
∗

t+1

)

(1) over the set Uα,β(pt, qt)
(2) under the condition

g
(

p, q, k∗t+1

)

≥ g
(

pt, qt, k
∗

t+1

)

(3)

Problem 2. Find a pair (p2, q2) maximizing the
function g

(

pt, qt, k
∗

t+1

)

(1) over the set Uα,β(pt, qt)
(2) under the condition

f
(

p, q, k∗t+1

)

≥ f
(

pt, qt, k
∗

t+1

)

(4)

Consider an auxiliary bimatrix game (A∗, B∗)
with the matrices

A∗ =

(

f(p1, q1, k∗t+1) f(p
1, q2, k∗t+1)

f(p2, q1, k∗t+1) f(p
2, q2, k∗t+1)

)

,

B∗ =

(

g(p1, q1, k∗t+1) g(p
1, q2, k∗t+1)

g(p2, q1, k∗t+1) g(p
2, q2, k∗t+1)

)

(5)

In this bimatrix game, i-th strategy of P1 is
”to choose p

i” and the j-th strategy of P2 is
”to choose q

j” (i = 1, 2; j = 1, 2). To obtain
(

pt+1, qt+1

)

the players find Nash equilibria. It
is easily proved that the game (A∗, B∗) has at
least one Nash equilibrium in the class of pure
strategies. Two cases are possible.

(1) The game has an unique Nash equilibrium
(pN , qN ). Then

(

pt+1, qt+1

)

= (pN , qN ).
(2) The game has two Nash equilibria (pN1, qN1)

and (pN2, qN2). Then
(

pt+1, qt+1

)

= 1

2
(pN1+

p
N2, qN1 + q

N2).



Thus, the pair
(

pt+1, qt+1

)

is determined; it de-
pends on k∗t+1.

After that the strategy kt+1 of P3 is chosen from
the condition

h
(

pt+1, qt+1, kt+1

)

− h (pt, qt, kt) ≥ 0 (6)

If such strategy kt+1 is nonunique, then one
chooses strategy giving the maximum to the left-
hand side of (6).

So, the dynamics of the considered repeated game
is completely determined.

Besides local criteria of players, given by (1),
quite often one gives also global criteria evaluating
the quality of the process wholly. And dynamics
constructed above not always leads to a state
optimizing global criteria. It appears that the
using so-called behavior types for players can be
effective in this case.

4. BEHAVIOR TYPES

Following the paper (Kleimenov, 1998) various
behavior types for players will be introduced in
this paper.

Until now it was assumed that each player is nor-
mal ( nr) in the sense that his (or her) behavior
is aimed at maximizing his (or her) own payoff.
However, there might be other behavior types
such as altruistic ( al) (”the better to my rival,
the better to me”), aggressive ( ag) (”the worse to
my rival, the better to me”), and paradoxical ( pr)
( the worse to me, the better to me”). These three
behavior types can be formalized in the following
way.

Let us say that some player is:

i) altruistic with respect to other player when-
ever he (or she) identifies his (or her) payoff
with the payoff of other player;

ii) aggressive with respect to other player when-
ever he (or she) identifies his (or her) payoff
with the payoff of other player taken with
opposite sign;

iii) paradoxical whenever he (or she) identifies
his (or her) payoff with the same payoff taken
with opposite sign.

These definitions indicate extremes in players’
behaviors. Real individuals behave partially nor-
mal, partially altruistic, partially aggressive. and
partially paradoxical. In other words, mixtures
of behavior types would better agree with real
dynamics.

If we restrict each player to ”pure” behavior types
then, for example, in two-person game with pay-

off functions f and g there exist 16 admissible
combinations shown in Table 1. In 4 combinations
players’ interests coincide, and they solve prob-
lems of optimal choice. In other 4 combinations
the players have opposite interests and, thus, play
zero-sum matrix games. The rest 8 pairs deter-
mine nonzero-sum bimatrix games.

Table 1

nr al ag pr

nr (f,g) (f,f) (f,-f) (f,-g)
al (g,g) (g,f) (g,-f) (g,-g)
ag (-g,g) (-g,f) (-g,-f) (-g,-g)
pr (-f,g) (-f,f) (-f,-f) (-f,-g)

In three-person game the number of admissible
combinations of ”pure” behavior types for players
is much more.

5. THREE-PERSON GAME OF PRISONER‘S
DILEMMA TYPE

Now consider a game G with three players P1, P2
and P3 each of which has two strategies: the first
one is denoted by C (cooperate) and the second
one is denoted by D (defect).

Payoffs for P1, P2 and P3 in the game G are given
as follows (see e.g. (Straffin, 1993)):

AC =

(

a4 a3

a6 a5

)

, BC =

(

a4 a6

a3 a5

)

,

HC =

(

a4 a3

a3 a1

)

, (7)

if P3 chooses strategy C, and

AD =

(

a3 a1

a5 a2

)

, BD =

(

a3 a5

a1 a2

)

,

HD =

(

a6 a5

a5 a2

)

, (8)

if P3 chooses strategy D.

Here A, B, H denote the payoff matrices of
P1, P2 and P3, correspondingly. The following
inequalities are assumed

a6 > a5 > a4 > a3 > a2 > a1 (9)

Remind that P1 and P2 act in the class of mixed
strategies and P3 acts in the class of pure strate-
gies. The pair (p, 1 − p), 0 ≤ p ≤ 1 is a mixed
strategy of P1, and the pair (q, 1− q), 0 ≤ q ≤ 1
is a mixed strategy of P2. The parameter r be-
longing to {C,D} is a strategy of P3.

Let this game be repeated. Assuming that P1,P2
and P3 construct the dynamics in the same man-
ner as in Section 3, we conclude that trajectories
generated by this dynamics are placed either in
the unit square

ED = {(p, q, r) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, r = D}



or in the unit square

EC = {(p, q, r) : 0 ≤ p ≤ 1, 0 ≤ q ≤ 1, r = C} ,

Suppose that P3 can make momentary switchings
from strategy C to strategy D and back.

Thus, P1 and P2 construct dynamics in repeated
bimatrix games

(

AC , BC
)

and
(

AD, BD
)

accord-
ing to the algorithm from Section 3 and taking
into account the condition that the payoff of P3
can not decrease along trajectories. In turn, P3
realizes switchings from the square EC to the
square ED and back as required.

This algorithm of constructing dynamics of the
repeated game was analyzed in completely an-
alytical form. Typical trajectories generated by
the algorithm for values r = D and r = C are
represented in Fig.1 and Fig.2, correspondingly,
for the case under conditions

a2 + a3 − a1 − a5 > 0, 2a2 > a1 + a5. (10)

Fig.1

Fig.2

Arrows in Fig. 1,2 show directions of motion for a
current state (p, q).

Note that all the players increase their payoffs
along the trajectories shown in Fig.1. At the same

time along the trajectories shown in Fig.2 P1 and
P2 increase their payoffs while P3 decrease his
payoff, i.e. actually all the trajectories should stay
in initial points.

Now assume in addition that during the process
of forming dynamics in repeated games

(

AC , BC
)

and
(

AD, BD
)

, P1 and P2 can use as regards
each to other various behavior types described
in Section 4. Finally, P3 can use paradoxical or
normal behavior types.

Let the condition of leading a state to the state
(C,C,C) be taken as a global criterion. Analyzing
Fig.1 and Fig.2 one can conclude that this global
condition can fail to be fulfilled if all the players
use only normal behavior type, meanwhile the
using of abnormal behavior types makes possible
to solve the problem (see (Kleimenov and Vole-
gova, 1999), where a repeated bimatrix 2×2 game
is considered).

Various optimization problems arise, for example,
a problem of minimizing time of using abnor-
mal behavior types. The proposed approach of
constructing dynamics in repeated three-person
game gives a tool for statement and solving similar
problems

6. NUMERICAL ILLUSTRATIONS

Let the parameters a1,. . . ,a6 be as follows

a1 = −2, a2 = 2, a3 = 3, a4 = 4, a5 = 5, a6 = 6.

Then the conditions (10) are fulfilled. Trajectories
on the square ED look like in Fig.1, and trajecto-
ries on the square EC stay in initial points.

The collection (D,D,D) isNE with players’payoffs
f = g = h = 2. However, the collection (C,C,C)
gives to each player the payoff equal to 4.

Let the global criterion be to lead states to the
state (C,C,C). Denote

G1 =

{

(p, q) ∈ ED : p+ q ≤
1

3

}

,

G2 =
{

(p, q) ∈ ED : 2pq − 4p+ 3q ≥ 1
}

,

G3 =
{

(p, q) ∈ ED : 2pq + 3p− 4q ≥ 1
}

,

G4 = ED \ (G1 ∪G2 ∪G3) .

These sets are represented in Fig.3. Analyzing
generated trajectories one can obtain that:

i) For initial states (p0, q0) ∈ G4, r = D

the proposed dynamics leads to the state
(C,C,D) after that P3 switches this state
to the state (C,C,C).

ii) For initial states (p0, q0) ∈ G1 ∪ G2 ∪ G3,
r = C or r = D it is impossible to reach
the state (C,C,D) without using abnormal
behavior types.



iii) For initial states (p0, q0) ∈ G2 ∪ G3, r =
D one can pass to the state (C,C,D) by
using normal behavior type for P1 (or P2),
and aggressive type for P2 (or P1), and
paradoxical type for P3 up to the reaching of
the boundary of G4, after that all the players
use normal behavior type.

iv) For initial states (p0, q0) ∈ G1, r = D

one can pass to the state (C,C,D) by using
aggressive behavior type for P1 and P2 and
normal type for P3 up to the reaching the
set G4, after that all the players use normal
behavior type.

G1

G2

G3G4

Fig.3

7. CONCLUSION

The proposed approach of constructing dynamics
in the repeated three-person game gives a tool
for statement and solving various optimization
problems, for example, the problem of minimizing
time of using abnormal behavior types.
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