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Abstract: In this paper the problem of estimating an unknown input for discrete-
time, non-minimum phase, multivariable, linear time-varying systems (LTV) is
considered. The initial condition of the plant may be unknown and stochastic
process and measurement noise are included. The input signal is modelled as
a random walk with drifts. Then it is estimated using a Kalman filter for a
uniformly detectable augmented system. A necessary and sufficient condition for
the detectability of the augmented system is provided. A Kalman filter-based
stable dynamic inversion (SDI) for LTV systems is obtained as a consequence of
our solution to the proposed problem. The inversion technique can be applied
to achieve output tracking for LTV systems in the presence of non-minimum
phase zeros and measurement and/or system noise. We are mainly motivated by
typical need to replicate time signals in the automobile industry. Similar problems
appear also in other fields as machine tool applications, aeronautic industry a.o.
Copyright c©2005 IFAC.

Keywords: Linear time-varying system, Kalman filter, Unknown input, System
inversion.

1. INTRODUCTION

Compared with state estimation, less research has
been done on estimating unknown inputs for LTV
systems. We refer to (Corless and Tu, 1998) for
a short overview of some of the existing results.
In the literature, a number of papers are devoted
to the inversion of dynamical systems (Devasia
et al., 1996; Devasia, 1999; George et al., 1999a;
Dewilde and van der Veen, 2000). Most of these
papers refrain from considering noise on the given
system and/or time-varying systems.

1 This work was partially supported by STW under con-
tract number TMR.5636.
o.v.iftime@dcsc.tudelft.nl, M.Verhaegen@dcsc.tudelft.nl

Given a linear system Σ, our objective is to gen-
erate an input sequence {û(k)}N

k=1 by obtaining a
suitable ‘inverse system’ Σinv that relates this in-
put sequence to the given measurement sequence
{yd(k)}N

k=1, for some given number of samples N .

The above objective was motivated by the typical
need for time waveform replication in the automo-
bile industry where the desired signal is obtained
through a real-life data acquisition run, and hence
corrupted by measurement and/or sensor noise.
An example is the reproduction of time records (of
accelerations and displacements) obtained during
test drives with prototype cars. This reproduction
is done on hydraulic test-rigs that enable full car
endurance tests, driving comfort assessment, etc.



for prolonged periods of time thereby saving pre-
cious resources. One high performance approach
to determine the necessary inputs to the hydraulic
actuators is via stable inversion of systems that
naturally takes into account noise in target time
histories, and is applicable to systems irrespective
of the location of zeros. We note that the SDI
procedure for LTI systems has successfully been
applied in (Cuyper and Verhaegen, 2002; George
et al., 1999a; George et al., 1999b) to aerospace
and automobile examples to compute the desired
input.

We consider in this paper discrete-time, non-
minimum phase, multivariable, LTV systems. The
input signal is modelled as a random walk with
drifts and then it is estimated using a Kalman
filter for an augmented system. Unknown initial
conditions of the plant and stochastic process
and measurement noise are considered. The pro-
posed solution is based on augmenting the given
uniformly detectable state-space model by a rea-
sonable model for the input sequence and then
designing a Kalman filter to provide an estimate
of the input sequence from the measurements. In-
stead of only one model of the input sequence, we
consider a set of models with a specific structure.
A Kalman filter-based stable dynamic inversion
(SDI) is obtained as a consequence of our solution
to the proposed problem.

This paper is organized as follows: in the next
section the class of systems under consideration
is introduced. The model of the input and the
resulting augmented system are presented in Sec-
tion 3. Section 4 contains the Kalman filter-based
stable dynamic inversion procedure under the
assumption that the augmented system is uni-
formly detectable. Before the concluding section,
the preservation of detectability under augmenta-
tion is discussed. More precisely, a necessary and
sufficient condition for uniform detectability of the
augmented system is provided.

2. PRELIMINARIES

Consider a discrete LTV system Σ of the form

Σ :
{

x(k + 1) = A(k)x(k) + B(k)u(k) + G(k)w(k)
y(k) = C(k)x(k) + D(k)u(k) + v(k),

(1)

where k represents the time index normalized
with the sampling period, the vectors x(k) ∈ Rn,
u(k) ∈ Rm and y(k) ∈ Rp denote the system state,
input and output, respectively, and w(k) ∈ Rn

and v(k) ∈ Rp represent the process and measure-
ment noise, respectively. A(k), B(k), C(k), D(k),
G(k) are deterministic matrices of appropriate
sizes, with real entries, describing the dynamic
system (plant). The matrix D(k) is known as

the direct transmission term, and it is typically
present if the output vector represents acceler-
ation measurements. The disturbance sequences
w(k) and v(k) are not known but assumed to
be zero-mean, identically distributed white noise
sequences that are uncorrelated with the input,
and with positive definite covariance matrix

E

[
v(k)
w(k)

]
[ vT (j) wT (j) ] =

[
R(k) ST (k)
S(k) Q(k)

]
∆(k − j),

where ∆ is the unit pulse. The initial state vector
x(0) is a random variable independent of w(k) and
v(k), with the mean and covariance given by

E[x(0)] = x̂0,

E[(x(0)− x̂0)(x(0)− x̂0)T ] = P0 > 0.

To represent the statistical information of the
random variable x(0) in an equation format, we
introduce an auxiliary random variable ũ(0) with
zero mean and covariance matrix In. Since the co-
variance matrix P0 is symmetric positive definite,
it has a Cholesky factorization P0 = S0S

T
0 with

S0 a unique lower triangular matrix with positive
diagonal entries. It is easy to verify that the ran-
dom variable x(0) can be described through the
following matrix equation: x(0) = x̂(0) + S0ũ(0).

3. AN AUGMENTED SYSTEM

The SDI technique is based on augmenting the
given state-space model (1) by a reasonable model
for the input sequence and then designing a
Kalman filter to provide an estimate of the in-
put sequence from the measurements {yd(k)}N

k=1.
For the input sequence u, we consider the follow-
ing bench of models (see (Waltraud Kahle and
Jensen, 1998) )

u(k + 1) = u(k) + γ(k)δ(k) + Gu(k)wu(k) (2)

for Gu(k) of appropriate sizes, some real positive
sequence δ(k) ∈ Rm and γ(k) ∈ Rm×m diago-
nal matrix with all γii(k) components in the set
{−1, 0, 1} (the signature of the entries). The signal
wu(k) is taken to be white noise with covariance
Qu, and uncorrelated with w(k) and v(k). Fur-
ther, we incorporate γ(k)δ(k) into the determin-
istic part of the input model. Let us consider
the diagonal sequence ∆(k) ∈ Rm×m such that
∆ii(k)u(k) := γii(k)δ(k) if ‖ui(k)‖2 ≥ T , and
∆ii(k) := γii(k)δ(k) if ‖ui(k)‖2 < T . The multiple
models (2) become

u(k + 1) = (1 + ∆(k))u(k) + Gu(k)wu(k) (3)

With the above assumptions one can add the
input as a state to a new equivalent system. The



resulting augmented system in compact form is as
follows:

Σa :
{

xa(k + 1) = Aa(k)xa(k) + Ga(k)wa(k)
y(k) = Ca(k)xa(k) + Ha(k)wa(k)

, (4)

where the state and the disturbance are xa(k) =(
x(k)T u(k)T

)T , wa(k) =
(

w(k)T v(k)T wT
u (k)

)T ,
and the system matrices are

Aa(k) :=
[

A(k) B(k)
0 1 + ∆(k)

]
Ga(k) :=

[
G(k) 0 0

0 0 Gu(k)

]

Ca(k) := [ C(k) D(k) ] Ha := [ 0 I 0 ] .

Remark that the augmented system Σa is a par-
ticular case of the most general state space formu-
lation for detection in linear systems (Gustavson,
2000, Model (10.1)). In our augmented model, the
abrupt changes appear only in the m ×m lower-
right block of the matrices Aa(k), and Ba(k) =
Da(k) = 0.

Example 3.1. An example is the estimation of an
almost constant input. For example one would like
to estimate a constant in the process white noise
which occurred at unknown time instants. One
can consider the following state space system with
D = Gu = 0 and A = B = C = G = 1

{
x(k + 1) = x(k) + u(k) +w(k)

y(k) = x(k) +v(k)

This example is similar to (Gustavson, 2000,
Example 10.1). There one would like to detect
changes of a constant in the measurement noise
instead of the process noise. The augmented sys-
tem has the following matrices:

Aa(k) =
[

1 1
0 1 + ∆(k)

]
, Ca = [1 0], Ga =

[
1 0 0
0 0 0

]

Example 3.2. One would like to estimate a func-
tion in the process white noise which has arbi-
trarily many changes. The unknown input will be
modelled as in (3) with Gu(k) = I. The model
in our approach is different in the sense that
all varying parameters are included in the aug-
mented system description in contrast with the
approach from (Gustavson, 2000, Example 10.2)
where some time-varying parameters are covari-
ances of the noise. If we consider Gu(k) 6= I, then
our model includes also varying covariances.

4. A KALMAN FILTER-BASED SDI

The notions of uniform detectability and uni-
form stabilizability for discrete-time, LTV sys-
tems and the connection with the Kalman fil-
ter are standard (Anderson and Moore, 1981): if
(Ca(k), Aa(k)) is uniformly detectable (UD) then

the optimal (Kalman filter) error covariance is
bounded; furthermore, if (Aa(k), Ga(k)) is uni-
formly stabilizable (US), the Kalman filter is uni-
formly exponentially stable (UES). Then one can
use the Kalman filter approach to estimate the
state of the system Σa, and consequently the input
u(k) and the inverse Σinv of the original system
Σ. Assume that the augmented system is UD. For
each sequence ∆(k), one can set up a Kalman
filter to estimate the state of Σa, which implies
the estimation of the input signal for Σ:
x̂a(k + 1|k) = Aax̂a(k|k − 1)−Ka (Cax̂a(k|k − 1)− y(k))

where
Ka := AaP (k|k − 1)C∗a (CaP (k|k − 1)C∗a + R)−1

and P (k|k − 1) satisfies
P (k + 1|k) = AaP (k|k − 1)A∗a
−AaP (k|k−1)C∗a (CaP (k|k − 1)C∗a + R)−1 CaP (k|k−1)A∗a

+

(
GaQG∗a 0

0 Qu

)
.

More precisely, if we define

Σinv := ( 0 I ) (zI − (Aa −KaCa))−1
Ka, (5)

an estimation of the input is given by

û(k) = Σinvy(k).

Further, we discuss how one can choose a ”good”
inverse of the system Σ and have a reasonable
estimation of the input. We start with selection
procedures for the design parameters ∆(k). For
each time instant k, the mode (discrete parame-
ter) ∆(k) of the system Σa akes three different
values. This model incorporates the model pre-
sented in (George et al., 1999b) for LTI systems.

Consider a given measurement sequence {yd(k)}N
k=1,

for some number of samples N . A natural strategy
for choosing ∆(k) is the following:

Strategy 4.1.
• For each possible sequence {∆(k)}N

k=1 set a
Kalman filter for Σa to find the minimum
variance state estimation.

• Choose the particular sequence of {∆(k)}N
k=1

corresponding to the smallest error.

Using the Kalman filter corresponding to the par-
ticular choice of sequence {∆(k)}N

k=1, one obtains
an inverse Σinv of the original system Σ and an
estimation of the input. The number of discrete
sequences {∆(k)}N

k=1 to be considered in the first
step of the above strategy is exponentially in-
creasing with respect to N . We have to perform
off-line a numerical search. For off-line analysis
there are numerical approaches based on the EM
algorithm or its stochastic version, the MCMC al-
gorithm (see (Gustavson, 2000) and the references
therein).

To further improve performance, one may increase
the number of possible choices for ∆(k). As a



draw-back, the computational load will be higher.
If we restrict only to improving the transient
behavior using the multiple model of the input,
we consider that ∆(k) = 0 for k ≥ k1, where
k1 < N . In this case the number of associated
Kalman filters is reduced.

5. DETECTABILITY OF THE AUGMENTED
SYSTEM

In this section we provide a necessary and suf-
ficient condition for the uniform detectability of
an augmented system. Before stating the main re-
sults we introduce the notations used throughout
this section.

The space of ”square summable” sequences is de-
noted lr2(Z). This is a Hilbert space with the usual
inner product which generates a finite energy
norm. We will restrict to sequences in lr2(Z) having
finite negative support. The forward bilateral shift
operator Z : lr2(Z) → lr2(Z) on sequences x ∈ lr2(Z)
is defined by (Zx)i := xi−1. Z is an inner and co-
inner operator on lr2(Z), and Z∗ = Z−1. Then,
one can express the system (1) as a system of
equations in the form (Ball et al., 1992)

Σ :
{

x = Ax + Bu + Gw
y = Cx + Du + v

. (6)

where A := ZA, B := ZB and G := ZG, with the
block diagonal operators formed using the state-
space matrix sequences denoted in boldface. We
will assume that all these sequences are uniformly
bounded. The transfer operator T(λ) : lm2 (Z) →
lp2(Z), λ ∈ C, associated to the system (1)

T (λ) := D + C(λI −A)−1B. (7)

is well-defined (Kamen et al., 1985).

A complex number λ is an almost eigenvalue of an
operator T on lr2 if there exists a sequence {xn}n∈N
with, for each n, xn ∈ lr2 and ‖xn‖2 = 1, such that

‖Txn − λxn‖2 → 0 as n →∞.

The sequence {xn}n∈N is called an almost eigen-
vector corresponding to λ. Denote by σa(T ) the
set of all almost eigenvalues of an operator T ,
known as the approximated point spectrum of T
(Beauzamy, 1988).

A spectral test for uniform detectability of discrete-
time LTV systems similar to the PBH-test is
provided by the following result (Peters and Igle-
sias, 1999).

Theorem 1. The following statements are equiva-
lent:

(1) The pair (C,A) is uniformly detectable.

(2) There exist a bounded operator K such that
A + KC is UES.

(3) There exists no almost eigenvalue of A with
magnitude greater than or equal to 1 for
which the corresponding almost eigenvector
xn satisfies ‖Cxn‖2 → 0 as n →∞.

For the definition of the almost eigenvalues and
almost eigenvectors of an operator on a Banach
spaces we refer to (Beauzamy, 1988). In case the
pair (C,A) is uniformly observable, it is possible
to define an operator K guaranteeing that A+KC
is UES in terms of the observability Gramian.
In the case of uniformly detectability, a Riccati
operator equation has to be solved to find a stabi-
lizing feedback. The square root Kalman filter will
provide an alternative computational attractive
method for finding a stabilizing feedback.

Define the operator

δ := Zdiag{I + ∆(k)}.

Assume that Theorem 1 holds. Then, we have the
following test for the uniform detectability of the
augmented system Σa.

Lemma 2. Let δ, Σ and Σa be as before. If the
following conditions are satisfied

(i) The pair (C,A) is uniformly detectable.
(ii) σa(δ) ∩ σ(A) ∩ {λ; |λ| ≥ 1} = ∅ (where ∅

denotes the empty set).
(iii) There exists no almost eigenvalue of Aa in

σa(δ) ∩ ρ(A) ∩ {λ; |λ| ≥ 1} for which the
corresponding almost eigenvector xn satisfies

‖T(λ)xn‖2 → 0

as n →∞ (ρ(A) denotes the resolvent set of
the operator A),

then the pair (Ca,Aa) is uniformly detectable.

PROOF. According to Theorem 1, we have to
prove that for all almost eigenvectors (xn)n∈N of
Aa we have that

Caxn → 0 ⇒ xn → 0 (as n →∞), (8)

where the convergence is in the sense of the norm

on lr2. Partition xn as
[

x1
n

x2
n

]
, corresponding to the

partition of Aa. Then,
[A− λI B

0 δ − λI

] [
x1

n

x2
n

]
→ 0 ⇒

[
x1

n

x2
n

]
→ 0 (9)

for λ ∈ σa(Aa) ∩ {λ; |λ| ≥ 1} the corresponding
almost eigenvalue for xn. From the lower part of
(9) it follows that x2

n → 0 or λ ∈ σa(δ)∩ {λ; |λ| ≥
1} and ξn := x2

n/‖x2
n‖ is a corresponding almost



eigenvector (remark that here we shall consider a
coercive subsequence of x2

n for which we use the
same notation).

Case I: If x2
n → 0, from the upper part of (9), we

have that (A−λI)x1
n → 0 (as n →∞). If x1

n → 0
then (8) is satisfied. When x1

n does not converge
to zero, one can construct x1

n/‖x1
n‖ an almost

eigenvector of A corresponding to λ (a coercive
subsequence of x1

n should be considered). Since
(C,A) is UD (see assumption (i)), it follows that
Cx1

n → 0 ⇒ x1
n → (as n →∞). Consequently, in

this case (8) is satisfied.

Case II: Assume now that λ ∈ σa(δ)∩{λ; |λ| ≥ 1}
and ξn is a corresponding almost eigenvector.
Since (ii) is satisfied, we have that λ ∈ σa(δ) ∩
ρ(A) ∩ {λ; |λ| ≥ 1}. The top row in (9) reads

[A− λI B ] [
x1

n

x2
n

]
→ 0.

This is equivalent to

x1
n − (λI −A)−1Bx2

n → 0. (10)

for all almost eigenvectors (xn)n∈N corresponding
to λ.

Caxn =
[
C D

] [
x1

n

x2
n

]
= Cx1

n + Dx2
n

= C(x1
n − (λI −A)−1Bx2

n) + T(λ)x2
n

Using (10) and assumption (iii), we obtain that
(8) holds, and the proof is completed.

For LTI systems the above lemma would imply
the following result.

Lemma 3. Let δ = I, Σ and Σa be as before
but time invariant. If the following conditions are
satisfied

(i) The pair (C,A) is detectable,
(ii) 1 /∈ σ(A),
(iii) The system Σ has no transmission zeros at

λ = 1, (T (1) 6= 0),

then the pair (Ca,Aa) is detectable.

Define the operator

N(λ) :=
[A− λI B

C D

]
.

The following refinement of the result from
Lemma 2 can be proved.

Lemma 4. Let δ, Σ and Σa be as before and as-
sume that the pair (C,A) is uniformly detectable.
Then, the following two conditions are equivalent.

(1) The pair (Ca,Aa) is uniformly detectable.

(2) There exists no almost eigenvalue of Aa

in σa(δ) ∩ {λ; |λ| ≥ 1} for which the cor-
responding almost eigenvectors xn satisfy
‖N(λ)xn‖2 → 0 as n →∞.

For LTI systems, the above lemma becomes.

Lemma 5. Let δ = I, Σ and Σa be time-invariant,
and assume that the pair (C,A) is detectable.
Then, the following two conditions are equivalent.

(1) The pair (Ca,Aa) is detectable.
(2) The system Σ has no left-invariant zeroes at

λ = 1, i.e., rank(N(1)) = r+m (where r and
m are the dimensions of the state and the
input, respectively).

The approximated point spectrum is invariant
under rotations. This implies that we need only
to consider the almost eigenvalues which are real
and have modulus greater then one.

It can be proved that if conditions (i) and (ii)
from Lemma 2 are satisfied then condition (2) of
Lemma 4 implies condition (iii) in Lemma 2. For
LTI systems this corresponds to the fact that the
set of invariant zeros contains the complete set of
transmission zeroes and some, but not necessarily
all, of the decoupling zeros. Similar results provid-
ing the preservation of the uniform observability
can be proved using the same techniques. Lemma
5 is an extension of a similar result stated in
(George et al., 1999b) which holds only if the
original system has no poles ar λ = 1.

If the LTI system is controllable and observable,
then the invariant zeros are the same with the
transmission zeros. It would be interesting to
see what will be the equivalent version for LTV
systems. We leave this as an open question.

Answers for many questions regarding the spec-
trum and the approximate point spectrum for
weighted shifts operators are provided in (Ben-
Artzi and Gohberg, 1991; Shields, 1974). To give
an idea of the analysis performed in the above
mentioned papers, we conclude this section with
some comments on the SISO LTV model of the
input. We pay attention to the homogeneous sys-
tem u(k + 1) = α(k)u(k) where α(k) := 1 + ∆(k).
By construction, α(k) is invertible for all k ∈ N,
and sup{|α(k)|, |α(k)−1|} < ∞. We consider the
following two real numbers

κ+ = lim
l→∞

sup
k∈N

‖
l−1∏

i=0

α(k + i)‖1/l

κ− = lim
l→∞

inf
k∈N

µ(‖
l−1∏

i=0

α(k + i)‖)1/l,



where µ(T ) is the smallest singular value of
T . Then the spectrum of the one-dimensional
weighted shift δ is given by the annulus

σ(δ) = {λ ∈ C;κ− ≤ |λ| ≤ κ+}. (11)

For particular cases of the sequence {α(k)}k∈N
one can compute κ− and κ+, see for example
(Halmos, 1967, Problem 77).

6. CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

In this note, we considered the problem of esti-
mating an unknown input for discrete-time, non-
minimum phase, multivariable, LTV systems. The
input signal is modelled as a random walk with
drifts. From the original systems and the models
of the input an augmented system is formed. If
the augmented systems is uniformly detectable,
the an estimation of the unknown input is ob-
tained choosing from a family of Kalman filters
the one which gives the minimal covariance error.
A necessary and sufficient condition for uniform
detectability of the augmented system is provided.
One consequence of this approach, the transient
behavior in estimating unknown inputs will be
improved even for LTI systems. A Kalman filter-
based stable dynamic inversion for LTV systems
is also obtained as a consequence of our proce-
dure. A Matlab toolbox for SDI for LTI systems
has successfully been used in applications, see for
example (Cuyper and Verhaegen, 2002).

6.2 Future Works

A class of LTV systems which we will consider
further will be linear, discrete-time, time-varying
systems for which the state-space becomes LTI
for k → ∞. For this systems one can perform
an inner-outer factorization to extract the system
zeros which are in, or very closed to, the additional
spectrum introduced by the augmentation proce-
dure. Simulations for particular examples will be
also performed by the authors. It is desirable to
extend the inversion Matlab toolbox for partic-
ular classes of LTV systems.
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