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Abstract: This paper presents an alternative method for the inverse kinematics
problem in serial-chain redundant robots. Such method is based on a recursive
algorithm that solves inverse kinematics by allowing only one joint to move at a
time, in a simulated stage. This transforms the n-dimensional problem in simpler
unidimensional ones, whose analytical solution for each joint is presented using the
Denavit-Hartenberg representation. Matlab simulations are performed in order to
show the method’s efficiency. The proposed method easily handles limitations of
joint positions and velocities and can efficiently be applied in real time. Copyright
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1. INTRODUCTION

Redundant manipulators are of great practical
interest because they can provide more flexi-
bility and reliability to the accomplishment of
tasks, once they can avoid obstacles in unstruc-
tured environments (Zlajpah and Nemec, 2002),
go on working when joint failures occur (Groom
et al., 1999), etc. However, a great problem with
them is to solve their inverse kinematics. The
presence of a degree of freedom (DOF) higher
than that required for a given motion in oper-
ational space means that the same end-effector
trajectory can be realized with different config-
uration motions. Thus, optimization-based tech-
niques have been developed to try to find the
“best”, or at least a good, solution among all
possible. The traditional approach for the inverse
kinematics solution of redundant robots is based
on the Jacobian pseudo-inverse matrix (Sciavicco

1 This work was supported by FAPESP, under grant
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and Siciliano, 1996), which locally minimizes the
Euclidian norm of joint velocities. However, this
approach has several drawbacks such as: mathe-
matical singularities, non-repeatability, difficulty
in handling joint constraints etc. In special, sin-
gularities occurs when, at certain location in the
joint space, the Jacobian matrix loses rank. As
the robot approaches these points in joint space,
the Jacobian matrix becomes ill conditioned and
the numerical inverse solution leads to large joint
velocities. Non-repeatability means that periodic
end-effector motions do not necessarily lead to
similar periodic motions in the joint space.

In the recent years, more attention have been
paid to the minimum effort techniques (Gravagne
and Walker, 2000), which locally minimizes the
infinity norm of joint velocities. This approach
is claimed to be more suitable for handling joint
limits even though it may cause discontinuity on
the joint velocities.



Aiming a simple and adjusted treatment of the
inconveniences presented by the traditional meth-
ods of inverse kinematics for redundant robots,
this paper proposes a recursive algorithm which
does not require any matrix inversion. Its deriva-
tion is based only on the robot direct kinemat-
ics , which can be easily obtained by apply-
ing the Denavit-Hartenberg (D-H) representation
(Sciavicco and Siciliano, 1996). Moreover, the pro-
posed method does not have the inherent draw-
backs of the traditional methods. It is inspired on
heuristic search strategies (Jacak, 1989; Madrid
and Palhares, 1997), and its convergency is shown
on the basis of the state-space search theory
(Perkins and Barto, 2001; Perkins, 2002).

2. ROBOT KINEMATICS

2.1 Forward Kinematics

For an n-axis rigid-link manipulator, the forward
kinematics solution gives the coordinate frame,
or pose, of the last link, Sn, related to the base
coordinate frame, S0. It is obtained by

0Tn = 0A1 . . . i−1Ai . . . n−1An = fk(q) (1)

where fk : R
n → R

m × SO(3) = SE(3), the spe-
cial Euclidian group for the positions and orienta-
tions of the end-effector, and q is the generalized
joint coordinates given by

qi =

{

θi for a revolute joint
di for a primatic joint

(2)

for i = 1, . . . , n, and i−1Ai is the well-known
Denavit-Hartenberg matrix. In compact matrix
notation

0Tn =

[

0Rn
0pn

0T 1

]

(3)

and

i−1Ai =

[

i−1Ri
i−1pi

0T 1

]

(4)

where R is a (3 × 3) rotation matriz representing
the orientation of the i-th coordinate frame, and p
a (3×1) positioning vector representing its origin.

2.2 Traditional Algorithmic Inverse Kinematics

The inverse kinematics solution

q = fk−1
(

0Tn

)

(5)

of equation 1 is highly nonlinear and generally
does not have a closed form analytical solution.

In redundant manipulators, equation 5 is under-
determined and, hence, admits an infinite number
of solutions. Therefore, algorithmic inverse kine-
matics strategies are applied through the inverse
kinematics mapping

q̇ = J -
a(q) (v + Ke) (6)

where, for the positioning case, e = pd−p(q) is the
error between the desired, pd, and the actual, p(q),
end-effector positions, K is a positive definite (di-
agonal) matrix, v is the velocity of the operational

space trajectory, J
-
a = JT

a

(

JaJT
a

)

−1
is the Moore-

Penrose pseudo-inverse, and Ja(q) ∈ R
m×n is the

analytical Jacobian matrix of the manipulator de-
fined as Ja(q) = ∂K(q)/∂q. The generalized joint
positions q are given by numerical integrations of
the joint velocities q̇. This solution locally mini-
mizes the Euclidian norm of the joint velocities.

A more general the inverse solution can be written
by including a secondary objective function as

q̇ = J -
a(q) (v + Ke) +

(

I − J -
a(q)Ja(q)

)

q̇0 (7)

where the matrix
(

I − J
-
a(q)Ja(q)

)

is a projector

of the joint velocities vector q̇0 onto the null space,
N (Ja), of the Jacobian matrix. A typical choice
of the null space joint velocity vector is

q̇0 = α

(

∂w(q)

∂q

)T

(8)

where α > 0 is a scalar, w(q) is a scalar objective

function of the joint variables and (∂w(q)/∂q)
T

is a vector function representing the gradient of
w. In this way, it is sought to locally optimize
w. Usual secondary objective functions are the
manipulability index, distance from joint limits,
distance from an obstacle, etc.

3. STATE SPACE SEARCH

A state space search problem (SSP) is a tuple
(S, G, s0, {O1 . . . Ok}), where:

• S is the state set. An arbitrary set;
• G ∈ S is the set of goal states;
• s0 6∈ G is the starting state, or the initial

condition.
• {O1 . . . Ok} is a set of search operators.

Some search operators may not be readily
applicable in some states. When a search
operator Oj is applied to a state s 6∈ G it
results in a new state Succj(s) and incurs a
cost cj(s) ≥ 0.

A solution for an SSP is a sequence of search
operators that, starting from s0, results in some
state belonging to G. A traditional way to solve



SSP is to apply heuristic search techniques (Pearl,
1984). In these algorithmic procedures, the next
search operator is chosen to be that with the
smallest value of f in

f(s) = g(s) + h(s) (9)

where g(s) is the actual distance from the initial
state and h(s) is an heuristic function that esti-
mates the current distance to the goal state.

Most of the heuristic search strategies were devel-
oped for discrete state spaces. However, some of
their properties have been extended for continu-
ous space states by means of Lyapunov analysis
(Perkins, 2002). A Lyapunov control function can
be defined as follows: Given an SSP, a control
Lyapunov function (CLF) is a function L : S 7→ R

with the following properties:(a) L(s) ≥ 0, ∀
s ∈ S; (b) There exists δ > 0 such that for all
s 6∈ G there is some search operator Oj such that
L(s)−L (Succj(s)) ≥ δ. A CLF is a good prospect
for a heuristic function due its monotonically de-
creasing as one approaches the goal.

When real time search is under concern, generally,
the search optimality is relaxed to improve time
performance. An example of a real time heuristic
search algorithm for continuous SSP is presented
in (Perkins and Barto, 2001).

4. PROBLEM FORMULATION AND
GENERAL EXPRESSIONS

4.1 Problem Formulation

In this paper, attention is paid to inverse kinemat-
ics mapping trajectories given in the operational
space, pd, to joint space trajectories. Now let p
represent the current end-effector position 2 , given
by the resolution of the forward kinematic model,
equation 1, and let the scalar function h, relating
the positioning error ep, be

h = ep
T ep (10)

where

ep = pd − p (11)

Function h is the heuristic evaluation function in
equation 9 and gives a measure of distance d(|pd−
p|).
A search operator Oj is defined as a sequence
of individual joint movings that causes the end-
effector to approach an operacional space goal
position. The order of these joint movings can

2 The problem formulation for the orientation is similar to

the positioning one.

be chosen by a best-first criterium or defined a

priori. It will be shown in section 5.2 that since the
desired trajectory is inside the robot’s workspace,
the application of a search operator will cause a
decrement of function h, making the end-effect to
approach the desired work space position. There-
fore, h, being subject to Oj , establishes a CLF.

As the algorithm is to be implemented in discrete
time, the trajectory is discretized into N points
at time intervals of ∆t, thus, the set of goal states
G is

G =
{

fk−1(pdk)
}

, k = 1, . . . , N. (12)

where fk−1(pdk) 3 is the inverse kinematics of
the k-th trajectory point. The state space set is
composed of joint positions, that is, S = q, where
q = [q1 . . . qn]

T
. Notice that, for redundant

robots, both G and S are continuous.

4.2 General Expressions

The contribution of the i-th joint to the problem
solution can be formulated using the Denavit-
Hartenberg representation, equation 1, by includ-
ing a displacement ∆θi in the i-th joint as

0Tn = 0A1 . . . A′

i
i−1Ai . . . n−1An (13)

in which

A′

i =

[

Rz,i(∆θi) 0
0 1

]

(14)

where Rz,i(∆θi) represents a rotation of ∆θ about
the i-th z axis. For ∆θi small enough, Rz,i(∆θi)
can be represented as

Rz,i(∆θi) =





1 −∆θi 0
∆θi 1 0
0 0 1



 (15)

Thus, the end-effector position, calculated from
equation 13, is

p = 0pn = 0Ri−1Rz,i(∆θi)
i−1pn + 0pi−1. (16)

For ∆θi = 0, ipn is easily calculated from equation
16 as

i−1pn = 0RT
i−1

(

0pn − 0pi−1

)

. (17)

Substituting equation 16 into equations 11 and 10,
yields

hi = k0,i∆θi
2 + k1,i∆θi + k2,i (18)

3 For notation simplicity, the subscript k will be omitted

throughout the rest of the paper.



which is a second-degree equation whose constants
k0,i, k1,i and k2,i are given by

k0,i = c2

x + c2

y

k1,i = bycx − bxcy

k2,i = −2pT
d

0pi−1 + 0pT
i−1

0pi−1+

pT
d pd + [bx by bz] [cx cy cz]

T
+

[cx cy cz] [cx cy cz]
T

(19)

with

[bx by bz]
T

= 20RT
i−1

(

0pi−1 − pd

)

(20)

and [cx cy cz]
T

= i−1pn . From equation 19, it can
be seen that k0,i ≥ 0. Therefore, when k0,i > 0 the
minimum of hi is easily found from equation 18
as

∆θ∗i =
−k1,i

2k0,i

(21)

When k0,i = 0, ∆θ∗i is set to zero.

5. PROPOSED ALGORITHM AND
CONVERGENCE ASSESSMENT

5.1 Proposed Algorithm

The basic idea of the considered method is to
compute the inverse kinematics by means of in-
dividual movements of each joint of the robot, in
a simulated stage, until desired operational space
point is reached. In the present algorithm, the
search operator is defined according to a prede-
fined constant sequence.

The displacement of each joint in the sequence
is calculated according to equation 21. This dis-
placement is then added to its corresponding joint
position, θi,j = θi,j−1 + ∆θ∗i , where subindex j
accounts for the j-th iteration of the algorithm.
The joint displacements are also accumulated,
∆θi,j = ∆θi,j−1 + ∆θ∗i , in order to determine
the total joint displacement during the time in-
terval ∆t. Note that ∆θi,0 = 0 and θi,0 is the
current joint configuration. If the i-th contribution
∆θ∗i 6= 0, the end-effector will approach the goal
position.

When joint variables θi,j and θ̇i,j = ∆θi,j/∆t
violate their limits defined by equation 22, ∆θi is
accordingly recalculated, so that joint limits are
no longer violated.

θi,min ≤ θi,j ≤ θi,max

θ̇i,min ≤ θ̇i,j ≤ θ̇i,max

(22)

In order to avoid sudden joint stops when they
reach their position limits, a velocity penalty func-
tion, equation 23, is used to slow down the joint
movement when it approaches a position limit.

Thus, a new joint displacement is determined ac-
cording to equation 24. An example of the shape of
the velocity penalty function is depicted in figure
(1), where the maximum absolute value of joint
angles is 1 rad.

wi =
4 (θi,max − θi,j) (θi,j − θi,min)

(θi,max − θi,min)
2

(23)

so

∆θ′i = wi∆θi (24)
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Fig. 1. Velocity penalty function.

The sequence of movements is repeated until no
further contribution can be given for the problem
solution, that is, ∆θ∗i = 0 for all i. This means
that the desired point was reached, or that it is
out of reach. To verify this condition, function

√
hi

is evaluated; if its value is smaller than a prede-
fined tolerance, the goal point is considered to be
tracked. Then, the new vector of joint reference
positions θj is sent to the joint controllers and
the next trajectory point is sampled. This process
repeats over and over until the last trajectory
point has been tracked.

5.2 Convergence Assessment

Assume that p is a point at the robot’s end-
effector, and pd is the next point to be reached.
Assume also that all joints are rotational, without
loss of generality. Figure (2) shows the projections
p′d and p′ from points pd and p on the ortogonal
plane to the rotation axis of the i-th joint (zi).

p′
p′

d

∆θi

θi

C1

C2

p∗

0pi−1

Fig. 2. Geometry of the i-th joint contribution.

C2 is a circumference centered in p′d with radius
|p′d − p′|. C1 is a circumference centered in 0pi−1,
defined in the xiyi plane with radius |p′ − 0pi−1|.
Thus, these circumferences always intercept at p′.
If they intercept only at p′, any move of i-th joint



will increase |p′ − p′d|, and consequently h . This
occurs when p′d lays on xi axis, except at 0pi−1.
When p′d coincides with 0pi−1, any move on i-th
joint will not change |p′ − p′d|. When C1 and C2

are secant, an incremental displacement ∆θ∗i can
be determined such that vectors |p′d − 0pi−1| and
|p′ − 0pi−1| are lined up, p′ = p∗, which means
the minimum d(|pd − p|) that can be reached by
moving joint i alone. Notice that k0,i corresponds
to the norm of the projection of vector i−1pn on
the xiyi plane. For this constant to become zero,
it is necessary that the end-effector position is
coincident with axis zi. In this case, any movement
of joint will not affect function hi. Therefore, when
k0,i = 0, ∆θ∗i is set to zero.

With the above considerations, it is straightfor-
ward to note that the proposed recursive algo-
rithm will always converge to a solution, regard-
less the order of the joint movings, since the de-
sired trajectory is inside the robot’s workspace.
The only problematic situation will occur when
the robot is outstretched, corresponding to a po-
sition in the boundary of its workspace, and the
next trajectory point is on the axis defined by the
robot’s structure. This situation could be avoided
by simulating a slight disturbance to a nearby
position before tracking the required point.

Finally, it is also importante to point out that even
though pd and p are relatively far from each other,
moving joint i by ∆θ∗i will decrease function hi,
since in a complete turn of joint i there is only
one position that minimizes d(|pd − p|). This fact
can be used for simulating changes in the robot’s
configuration in order to get a better performance
from the algorithm.

6. SIMULATIONS AND RESULTS

The proposed algorithm has been implemented in
the MATLAB environment to demonstrate its ap-
plication. Simulations have been performed based
on a four-DOF planar manipulator depicted in
figure (3), whose link lengths are of 0.2 m. All
trajectories used in the simulations were circu-
lar or elliptic and were generated using function
refcirc.m of the Planar Manipulators Toolbox

(Zlajpah, 1998). In all simulations, the considered
sampling time was ∆t = 0.001 s. The tolerance
used for checking if a point has been tracked was
10−5 m, and the joint sequence used was from

joint 1 to joint 4.

The objective of the first simulation was verify
the recursive algorithm behavior when the ma-
nipulator reaches its joint limits. Initially, the
manipulator was required to follow a circular tra-
jectory with a radius of 0.15 m and a period of
1 s. In this first case, the position limits for joint

Fig. 3. Prototype redundant robot at the labora-
tory.

4 was set to θ4,min = 0.60 rad and θ4,max =
0.85 rad. The initial joint configuration was θ0 =
[π/4, π/6, π/2, π/4]

T
rad. Figure (4) shows the

time history of the joint positions for this trajec-
tory as well as the corresponding tracking error. It
is important to observe that the velocity penalty
strategy, equations 23 and 24, was not used so
the position of joint 4 was clamped to its limiting
values. However, the resulting tracking accuracy
was not affected.

The same above experiment was repeated, but
velocity limits were used for joint 4, θ̇4,min =

−0.50 rad/s and θ̇4,max = 0.5 rad/s. The corre-
sponding results are shown in figure (5). Despite
the saturation on the joint velocities, the tracking
accuracy was not affected too.
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Fig. 4. Recursive algorithm behavior under posi-
tion limits.
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Fig. 5. Recursive algorithm behavior under veloc-
ity limits.

To compare the recursive algorithm behavior
against the traditional approach, that is, pseudo-
inverse method, the manipulator was required to
perform an ellipsoidal repetitive trajectory in the
operational space, with x and y radius of 0.1 m
and 0.2 m respectively and period of 2 s. The total



trajectory time was 50 s. The initial joint config-
uration was θ0 = [π/3, π/3,−π/2,−π/2]

T
rad,

corresponding to the end-effector position p0 =
[0.2732, 0.2732]

T
m. The intent of this experi-

ment was to show how the proposed algorithm can
be used to control the joint trajectory generation
for redundant manipulators by imposing limits on
the joint positions. Initially, a wide range of joint
movements was allowed, θi,min = −π rad and
θi,max = π rad for all i in the predefined joint
sequence. After that, the initial joint configuration
was set, in a simulated stage, to the middle of
joint position limits, that is, θ0 = [0, 0, 0, 0]

T

(a singular configuration for the pseudo-inverse
technique), and p0 was tracked. This is equiva-
lent to reconfigure the robot configuration before
starting the movement. The idea here was to start
the robot motion with a initial configuration that
was far from the joint position limits.

After this initial procedure, the robot was put
into movent, and at the end of 6 s the equivalent
joint limits were modified to the maximum and
minimum values of the joint positions recorded
during this period. The corresponding results for
the repetitive trajectory using the pseudo-inverse
technique, equation 6, with K = diag(100), and
the recursive algorithm are shown in figures (6)
and (7) respectively. In this case, the velocity
penalty strategy, equations 23 and 24, was used,
which avoided sudden stops of the joint move-
ments. As expected, the pseudo-inverse method
did not generate repetitive joint space trajectory,
while the recursive method did.
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Fig. 6. Joint positions and velocities for the
pseudo-inverse inverse kinematics algorithm.
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Fig. 7. Joint positions and velocities for the recur-
sive method.

7. CONCLUSIONS

A recursive method for solving the inverse kine-
matics of redundant robots was presented in this
paper. As can be seen from the results, the pro-
posed method is able to efficiently cope with join
position and velocity limits. This fact leads to
the possibility of imposing a desired behavior for
the robot, as it was shown in the repeatability
example. Moreover, due to the regularity and sim-
plicity of its operations, the proposed method can
be easily implemented in real time by means of
digital signal processors, field programable gate
arrays, etc.
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