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Abstract: In this paper, the control system is proposed to obtain the desirable width
margin of a strip in a rolling process. The neural network model is also suggested
to improve the prediction performance of the width spread. The selection method of
input parameter for the network using the hypothesis testing is proposed in this paper.
The developed network model is based on the measured data such as the entry, delivery
width margin of finishing mill and process setup data such as unit tension between
stands, roll force, temperature, etc. Moreover, an edger control scheme is proposed to
guarantee the desired strip width of finishing mill. It is shown through the field test of
Pohang No.1 hot strip mill of POSCO that the width margin is greatly improved by
the network model and the control scheme proposed in this paper. Copyright c©2005
IFAC
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1. INTRODUCTION

Normally the width of strip in hot rolling mill
is controlled at roughing mill. The width spread
model and AWC, having the function of short
stroke to compensate the width shortage at fin-
ishing mill, have been popular. What the width
control is adopted only at roughing mill is that the
width spread is ignored at finishing mill because of
the difficulties of experiment at high temperature
and analysis by the complexity of process parame-
ters, etc. At the finishing mill, the width control is
not performed and only the tension control using
the looper system is applied to reduce the width
fluctuation.

The tension of hot strip is mainly controlled by
looper system which is located between rolling
stands at finishing mill. Price (Price, 1973) pro-

posed a static/dynamic model for looper including
its drive. Clark et al. (Clark et al., 1997) devel-
oped a hydraulic looper system in order to get
high response time. Conventional looper control
generally adopts PID scheme for the looper angle
and tension regulation. Since interaction between
angle and tension is existed, Okada et al. (Okada
et al., 1998) and Seki et al. (Seki et al., 1991) pro-
posed decoupling model and applied an optimal
multivariable controller to prevent the interaction,
where the tension is controlled by changing the
torque of looper motor and mill motor speed. The
tension is greatly fluctuated at finishing mill be-
cause of a temperature hunting and operating con-
dition of operators. Imanari (Imanari et al., 1997)
developed H∞ controller instead of looper PID in
order to reduce the tension fluctuation and sim-
ulated the algorithm to verify the effect. Hesketh
et al. (Hesketh et al., 1998) designed the tension



controller based on the output feedback. The al-
gorithm is used recursive nonlinear technique and
induced by backstepping logic. Moreover Asano et
al. (Asano et al., 2000) proposed a decentralized
and impedance controller based on two degree of
freedom IMC(Internal Mode Control) structure.

However, these previous results have usually fo-
cused on design of tension controller to reduce the
width fluctuation. The controller has two critical
issues. One is the various model uncertainties of
looper system, which are operator’s inexperience,
unknown dynamic parameters to difficult to mea-
sure. The other is not easy to apply the real
plant because of the complexity of the controller
structure, etc.

Thus the width control at finishing mill is required
in reality because the width spreads at finishing as
well as roughing process. Moreover, width predic-
tion model as well as tension controller in order
to control the width at finishing mill is needed.
Neural network model is proposed to predict the
width spread. At the design of the neural network
model, the input selection method of network is
important. In this paper, a statistical approach
to select the input of the network is presented.
Many researchers have studied to select properly
the network input. (Yu et al., 2000; Wu and
Massart, 1996; Back and Trappenberg, 2001) The
conventional methods are weight pruning (Ledoux
and Grandin, 1994) and data pretreatment, etc.
The weight pruning technique is the reduction
method of the input dimension, which selects the
effective variables, synaptic weights by using mea-
sure of the saliency.(Reed, 1993) PCA(Principal
of Component Analysis)(Luo et al., 1999; Kamb-
hatla and Leen, 1997)is the one of the most pop-
ular data pretreatment methods, but it is not
easy to apply the rolling process, which is the
nonlinear physical system including many process
parameters. Therefore, the systematically select-
ing technology of neural network input related to
width change is needed.

The paper is organized as follows: Section 2 gives
a brief description of the plant. In Section 3,
the neural network learning model to raise the
precision of the width prediction is proposed.
The statistical method to select network input
is proposed. Section 4 describes the application
results of the Pohang No.1 hot strip mill(P1H)
of POSCO. Conclusions and further work are
discussed in Section 5.

2. PLANT DESCRIPTION AND CONTROL
PROBLEM

Figure 1 shows a layout of Pohang No.1 hot
strip mill of POSCO. The slab produced from the

continuous casting plant is reheated in the furnace
and the slab of furnace exit is edged at sizing
press. The roughing mill is the process which
the thickness and width of the slab are roughly
rolled. The width of the hot rolled strip is nearly
determined at this stage.

Next, the strip at the exit of roughing is edged
once more at the edger of F0 stand and moves
to finishing mill area. The finishing mill has 6
stands with the inter-stand looper control system.
Loopers absorb the mass flow unbalance due to
the inter-stand strip speed difference.

Normally, the roll gap and force are set up and
controlled using 2 dimensional rolling model on
the assumption that the width at the finishing mill
is constant. That is the reason that 3 dimensional
rolling model varying the width is very compli-
cated to apply. But the width at the horizontal
rolling of the F0 and finishing mill spreads to the
width direction which is not constraint.

Conventional width control at the roughing mill
is called AWC which controls the gap of the
E1,E2 using the width measurement system(RW).
Moreover, the F0 edger gap by the empirical
prediction of the width spread quantity is set up
in advance. But the performance of the width
control is diminished because the exact width
model has not been developed at the finishing
process. Therefore, the width model and controller
at the process are needed.

AWC, conventional width controller, has the two
main control issues. One is FB(Feed Back) AWC
which controls the gap of the edger(E2) to de-
crease the difference between the target width
and the measured width from the RW sensor.
The other is RF(Roll Force) AWC which is the
control method to consider the width spread after
horizontal rolling.

3. NEURAL NETWORK MODEL OF WIDTH
PREDICTION

The field test result has the prediction error
2.23mm as described. The error is caused by the
uncertain rolling condition, for example operator
manual intervention, lack of the temperature uni-
formity, setup error, etc. Since the error is not
small, in this paper, the neural network learn-
ing model which compensates the model error is
proposed. In particular, a statistical approach to
select the input of the network is presented. The
proposed algorithm can simplify the procedure
and effort of the input selection.
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Fig. 1. Configuration of hot strip rolling mill

3.1 Hypothesis Testing

A statistical hypothesis is usually a statement
about a set of parameters of a population dis-
tribution (Ross, 2000). It is called a hypothesis
because it is not known whether or not it is true.
Suppose that X1, · · · , Xn is a sample of size n from
a normal distribution having an unknown mean µ
and a known variance σ2 and null hypothesis(H0),
alternative hypothesis(H1) in testing are defined
as equation (1).

H0 : µ = µ0 and

H1 : µ 6= µ0, (1)

where µ0 is some specified constant.

Since X =
∑

Xi/n is a natural point estimator
of µ, it seeds reasonable to accept H0 if X is not
too far from µ0. That is, the critical region of the
test would be the form

C = {X1, · · · , Xn : |X − µ0| > c}. (2)

for some suitably chosen value c.

If the test has significance level α, then it must
be determined the critical value c in equation (2).
That is, c must be such that

Pµ0{|X − µ0| > c} = α, (3)

where Pµ0 is the probability at µ = µ0.

However, when µ = µ0, X will be normally
distributed with mean µ0 and variance σ2/n and
random variable Z, defined by equation (4), will
have a standard normal distribution.

Z ≡ X − µ0

σ/
√

n
. (4)

Equation (3) is equivalent to

P

{
|Z| > c

√
n

σ

}
= α.

or, equivalently,

2P

{
Z >

c
√

n

σ

}
= α,

where Z is a standard normal random variable.

However, it is known that

P{Z > zα/2} = α/2.

and so

c
√

n

σ
= zα/2.

or,

c =
zα/2σ√

n
.

Thus, the significance level α test is to reject H0

if
√

n
σ |X − µ0| > zα/2 and accept otherwise; or,

equivalently, to

reject H0 if

√
n

σ
|X − µ0| > zα/2

accept H0 if

√
n

σ
|X − µ0| ≤ zα/2 (5)

From equation (5), it is determined whether or
not to accept the null hypothesis by computing,
first, the value of the test statistic and, second,
the probability that a unit normal would exceed
that quantity. This probability-called the p-value
of the test-gives the critical significance level in
the sense that H0 will be rejected if the p-value
is less than the significance level α and accept of
it is greater than or equal. The parameter α is a
constant and set to 0.05 in this paper.

3.2 Input Selection Process

The factors related to the width deviation at
finishing mill are selected from the experimental
knowledge before deciding the network inputs.
The factors are as follows, namely, thickness and
width set value, components(C, Si, Mn), average
width deviation, steel grade, threading speed set
value, thickness calculation value and unit tension
set and roll force set at each stand, entry temper-
ature value, width set at the delivery of finishing,
roughing width, width margin value at F0 stand,
etc. The correlation between the delivery width
margin and the factors is analyzed by commer-
cial MINITAB software. Pearson method is used
to solve the correlation coefficient(r), defined as
equation (6).



Table 1. Correlation of F6 width and
related factors

Factor Correlation coefficient(r) p-value

RM width 0.605 0
F0 width 0.469 0

Unit tension -0.37 0
...

...
...

Component Mn -0.017 0.385
F4 roll force -0.003 0.884

r =
Sxy√

Sxx · Syy

=
∑

(xi −X)(Yi − Y )√∑
(xi −X)2 ·∑ (Yi − Y )2

,(6)

where x is an input, Y is an output variable, X,Y
are a mean of input, output, respectively.

From Table 1, 25 factors having the large corre-
lation are selected. The correlations between F0
width and 25 factors are similarly analyzed. If the
calculation result of the p-value is less than α, then
H0 is rejected, namely the factor is statistically
signified. The factors which the p-value is less than
α are selected 10 variables from the analysis.

The regression is executed to explain the appropri-
ateness of the 10 variables using the Least Square
Method(LSM). R2 between the F0 width and 10
variables is 71% and it is the satisfied results. R2

is called coefficient of determination, defined as
equation (7).

R2 =
SSR

SST
= 1− SSE

SST
, (7)

where SST is the total variation, SSR is the vari-
ation which can be explained by the regression,
SSE is the variation which can’t be explained by
the regression. The relation of these variations is
SST = SSE + SSR. Finally the selected input
parameters are product thickness, width, com-
ponents(C, Si), no.1 and no.2 unit tension, F1
reduction, F1 roll force, F5 entry temperature, F6
delivery width.

The structure of the network has 1 hidden layer,
tangential sigmoid nonlinear function. Levenberg-
Marquardt back propagation method is used for
the learning. The parameters of the network are
displayed in Table 2.

Table 2. Design parameters of network

Network input Norm. input Output

Max 25,1300,250,80,110, 0.8 20
120,1,2500,1200,20

Min 1.2,650,0.5,0,20, -0.8 0
30,0,500,800,0

4. FIELD TEST RESULTS AND DISCUSSION

In this section, the width control performance
is checked using the developed algorithm and

the control system. Figure 2 is the layout of
the control system at Pohang No.1 hot strip
mill, where the width measurement system(F0W)
measures the entry width of the finishing mill and
the width spread model estimates the delivery
width at last stand. Neural network supplements
the width model deficiency.

RW
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Edger Gap
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Edger Feedback Control
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Fig. 2. Layout of width control system

4.1 Precision Test of Developed Width Model

The inputs of the network are the delivery width
margin set value of the finishing mill, thickness,
C, Si, etc, and the output is the entry width
margin set value of the finishing mill(F0 delivery).
Normally the set value of delivery width margin
is 7mm. It is important to estimate the set value
of the finishing entry width, because it is the
reference width of the roughing mill and F0 edger.

The test coil is 1258 coils gathered at Sep. 2003
to analyze the precision of the developed model.
Figure 3 shows the test results about performance
of the width model including the learning model.
The estimated width and measured width which
is measured from the width measurement sys-
tem(F0W) installed at this project are compared.
Table 3 shows clearly the performance. The pre-
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Fig. 3. Comparision of estimated and measured
width

cision of the estimation is about 85(%) within
2(mm) in case of the stainless, 77.3(%) in case



of the all coils. Moreover, the standard deviation
between estimated and measured width is about
1.69(mm).

Table 3. Performance of the model

All coils Stainless coils
< 1 < 1.5 < 2 < 1 < 1.5 < 2

Perform.(%) 42.3 62 77.3 45 60 85

4.2 Test Results of F0 Edger Control

Until now, feedback control of F0 edger is not
possible because of the absence of the reference
width at the entry of the finishing. However,
the newly developed width spread model and
supporting neural network now make it possible
to use F0 edger feedback control. Thus, the error
between the predicted and measured width is
calculated and the gap control quantity of F0
edger from the error is calculated.

Figure 4 shows the test result. From the figure,
F6 measured width margin in this coil is 10(mm).
Moreover F0 width margin predicted by neural
network is 11(mm). At about 9(sec), since the
measured F0 width is less than the predicted
width, F0 edger feedback control is applied at
about 17(sec) and the F0 actual width is recovered
at that point.
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Fig. 4. Test result of edger control

Table 4 shows the effect of the control. From the
test of 2 weeks, the mean and standard deviation
of the F6 width have improved about 6.1(%) and
12.5(%), respectively.

Table 4. Final test results(unit:mm)

Conventional Proposed
width mean deviation width mean deviation

8.2 1.6 7.7 1.4

5. CONCLUSION

The width prediction model which includes the
flat, tension model and learning model using neu-
ral network for finishing process is developed and
applied to a real plant to reduce the width margin.
The effective network inputs out of the many pro-
cess parameters are systematically selected by the
statistical method which proposed in this paper.
The method is shown to be an efficient approach
to the determination of the input parameters. The
hypothesis testing method is applied to select the
network input and saved the time, effort. More-
over, the setup and feedback control of F0 edger
are executed to control the width. The results
of on line field test have shown that the mean
and standard deviation of the margin have im-
proved about 6.1(%) and 12.5(%), respectively
by the proposed method. This confirms that the
proposed model and control are very effective in
improving the performance of the width control.
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