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Abstract. Magneto-sensitive (MS) elastomers are a class of smart materials whose
mechanical properties change instantly by the application of a magnetic field. The
control of spherically symmetric oscillations of initially inflated MS elastic sphere by
a homogeneous magnetic field is considered. The presented results can be used for
generation of spherically symmetric acoustic waves. Copyright 2005 IFAC.
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1. INTRODUCTION

Magneto-sensitive elastomers are materials that
respond to an applied magnetic field with an in-
stantaneous change in the mechanical behavior.
These materials typically consist of micron-sized
ferrous particles (2–3 µm) dispersed in an elas-
tomer. An improved understanding of MS elas-
tomers is demanded by the prospect to provide
simple, reliable and rapid-response interfaces be-
tween controls laws and mechanical systems. It is
now well recognized that MS elastomers have the
potential to improve the design of electromechan-

ical devices and their operation. For example, an
elastomer with field dependent properties may be
used as a device with a variable stiffness. There-
fore, this wide range of potential applications and
associated economic benefits are the reason for the
intense research on these materials in recent years
(Kordonsky, 1993, Carlson and Jolly, 2000).

In this paper we consider the spherically symmet-
ric deformation of an isotropic elastic MS sphere
in a homogeneous magnetic field. We present the
appropriate differential equation of dynamics for
sphere inflated by the inside pressure, where the



magnetic field is an external parameter changing
the stiffness of the sphere. The appropriate prob-
lem of the parametric control and damping of os-
cillations for the dynamical system is solved by
the Lyapunov method (Fradkov, 1999). The pre-
sented theoretical results are based on the theorem
about asymptotic stability in reference to the part
of variables (Rumyantsev and Oziraner, 1987) and
the Barbashin-Krasovski theorem.

2. BASIC EQUATIONS

We consider an isotropic elastic sphere of the in-
side radius a0 and outside radius b0 in the ref-
erence configuration. The inside pressure P > 0
spherically symmetric inflates the sphere to sizes
(a, b). From the incompressibility of MS elas-
tomers (Brigadnov and Dorfmann, 2003) it follows
that the volume of the sphere is constant, i.e.

b3 − a3 = b3
0 − a3

0 = D0 . (1)

The spherically symmetric mapping is described
by the relation

x(t, r) = X(r) + U(t, r)er ,

where x and X are the actual and reference radius-
vectors as functions of the time t and radius r
only, U is the field of the full radial displacements
of the sphere and er is the radial basic vector of
the Euler spherical coordinates (r, θ, ϕ). We as-
sume that U(t, r) = a(t) − a0 + u(t, r), where u is
the relative field of radial displacments such that
u(t, a0) ≡ 0. From the incompressibility condition
(1) the current outside radius is easily found as

b =
(

a3 + D0

)1/3
.

From the local condition of incompressibility
div (Uer) = 0 with the condition u(t, a0) ≡ 0 we
obtain

U(t, r) = (a(t) − a0)
(a0

r

)2

. (2)

In the considered problem the full displacements
are finite but deformations are small, therefore,
for description of the actual configuration we can
use the linear elasticity theory. As a result, for
the Cauchy strain tensor having in the spherical
coordinates the form

ε(t, r) = (a(t) − a0)
a2
0

r3
(−2erer + eθeθ + eϕeϕ) ,

(3)
and the Cauchy stress tensor σ, the Hooke law for
incompressible materials is true

σ =
2

3
Eε − pI , (4)

where E is the Young modulus, p is the hydro-
static pressure and I is the identity second order
tensor.

Neglecting the weight of the sphere, in a homoge-
neous magnetic field the equilibrium equation has
the classical form

ρ0

∂2x

∂t2
= div σ , (5)

where ρ0 is the density of a MS elastomer.

Substituting relations (2)–(4) into the equation
(5) we obtain the condition σθθ = σϕϕ and the
differential equation for functions a(t) and p(t, r)

ρ0ä
(a0

r

)2

+
∂p

∂r
= 0 , (6)

which is true for every radius r ∈ (a0, b0) and time
t > 0.

On the inside surface of the sphere we have the
surplus pressure P > 0 and the outside surface is
free, therefore, the following boundary conditions
are true

σrr(t, a0) = −P , σrr(t, b0) = 0 . (7)

After integration of the equation (6) in r and tak-
ing into account the boundary conditions (7) we
obtain the differential equation for the current in-
side radius of the sphere

ä + c (a − a0) = f , (8)

where c and f are the reduced stiffness and exter-
nal force, respectively, having the following form:

c =
4

3

(

E

ρ0

)

D0

a2
0b

2
0 (b0 − a0)

> 0 ,

f =

(

P

ρ0

)

b0

a0 (b0 − a0)
> 0 .

For a constant inside pressue P0 > 0 the inflated
sphere has the inside and outside radiuses

a∗ = a0

[

1 +
3

4

(

P0

E

)

b3
0

D0

]

> a0 , (9)

b∗ =
(

a3
∗

+ D0

)1/3
> b0 .

For example, the sphere with initial radiuses
a0 = 0.1 and b0 = 0.11 (m) prepared from the
elastomer with the Young modulus E ≈ 1.8 MPa
inflates to sizes a∗ ≈ 0.15 and b∗ ≈ 0.155 (m).

It was proven (Brigadnov and Dorfmann, 2003)
that in a magnetic field the Young modulus of MS



elastomers only increases according to the follow-
ing relation

E = E0

(

1 + ηB2
)

, (10)

where E0 is the Young modulus corresponding to
zero magnetic flux density B, η > 0 is the MS co-
efficient. From experiments it is well known that
η = η(λ), where λ ∈ [0, 0.5] is the MS particle vol-
ume fractions in an elastomer (Kordonsky, 1993,
Carlson and Jolly, 2000). For commercially avail-
able MS elastomers η(0) = 0 and η(0.5) ≈ 0.5
(Brigadnov and Dorfmann, 2003).

For example, the examined above initially inflated
sphere from a MS elastomer with λ ≈ 0.3 in a
homogeneous magnetic field B ≈ 0.8 T l shrinks
to sizes a1 ≈ 0.14 and b1 ≈ 0.146 (m).

In the following section we will consider oscilla-
tions of a MS elastic sphere near the static equi-
librium state (9). After the standard replacements
y = a − a∗ and τ =

√
c0 t, where c0 is the the

reduced stiffness corresponding to zero magnetic
field, the equation (8) is transformed into the fol-
lowing simple form

ÿ +
(

1 + ηB2
)

y = 0 . (11)

3. STATIONARY OSCILLATIONS

Consider the problem of generation of harmonic
oscillations with the desired frequency ωd and the
desired amplitude Ad in system (11). Define the
desired coefficient of the reduced stiffness by the
formula cd = ω2

d. The multiplicator with y is rep-
resented as

1 + ηB2 = cd + ug (12)

where ug is new control input. Let Bmax be the
magnetic saturation of the MS elastomer, typically
Bmax is about 1 T l (Brigadnov and Dorfmann,
2003). Then

1 < cd < 1 + ηB2
max (13)

or
cd = 1 (14)

The last conditions impose restrictions on the de-
sired frequency. Introduce the function of energy
E = 1

2
(ẏ2 + cdy

2) and the desired energy Ed =
1

2
cdA

2
d. It is easy to check that Ė = −yẏu. Con-

sider the Lyapunov function V = 1

2
(E −Ed)

2 and
synthesize the control input from the condition of
decreasing the Lyapunov function on the trajec-
tories of the closed loop system (Fradkov, 1999).

Differentiating we get that V̇ = −yẏ(E − Ed)u.
Under the condition (13) choose as control input

ug = F (yẏ(E − Ed)) (15)

where F (t) is continuous, strictly increasing func-
tion, F (0) = 0. It may be bounded. It is reason-
able to choose F so, that

1 − cd < F < 1 − cd + ηB2
max .

Under the condition (14) choose as control

ug = F+(yẏ(E − Ed)) (16)

where F+(t) is continuous function, F+(t) = 0 for
t ≤ 0, and it strictly increases for positive t. It
may be bounded.

For the deviation of energy the following equation
holds

(E − Ed)̇ = −ẏyF (yẏ(E − Ed)) (17)

Proposition 1. The closed loop system (11),
(12), (13) (or (14), (15), (16)) has the desired har-
monic oscillation as the solution. The extended
system (11), (12), (13) (or (14)), (15), (17), (16),
(17) is asymptotically stable in reference to the
variable E − Ed. The closed loop system has also
the equilibrium y = 0, ẏ = 0, which is unstable.

Proof. The asymptotic stability follows from the
application of theorem on asymptotic stability in
reference to the part of variables (Rumyantsev and
Oziraner, 1987) to the function V . Because Ė ≥ 0
in small environ of the point (0, 0) then this equi-
librium is unstable in accordance to the Chetaev
theorem on instability.

Consider also the problem of oscillation damping.
Construct the control input from the condition of
decreasing E. Represent the multiplicator with y
as

1 + ηB2 = c + u0 (18)

where c = 1 or c > 1. In first case define as control
input

u0 = F+(yẏ) (19)

and in the second case

u0 = F (yẏ) (20)

where the functions F and F+ were mentioned
above.

Proposition 2. The closed loop system (11),
(18), (19) (or (20)) is globally asymptotically sta-
ble in reference to the variables y, ẏ.



Proof. It follows from the application of the
Barbashin-Krasovski theorem to the function E.

Modelling

The closed loop system described in Proposition 1
was inegrated numerically with the following pa-
rameters: cd = Ad = 1, F (p) = arctan(p)/π on
time interval [0, 100] with the different initial data
(y0, ẏ0): (0.5, 0), (0.8,−1), (1, 1), (2, 1), (2, 0). In
first figure there is the phase portrait for initial
data (0.5, 0) and time interval [0,200]. Also it
was integrated the system described in Proposi-
tion 2 on time interval [0, 200] with the parameter
c = 1.5 and the different initial data (1, 0) and
(1, 1). In all cases there were the desired conver-
gencies.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

4. NONSTATIONARY OSCILLATIONS

Here solve the problem of inverted dynamics.
Rewrite the equation (11) as

ÿ + Uy = 0 , (21)

where U is a new control. Try to find the desired
oscillations as

yd(t) = A(t) sin(ϕp(t)) ,

where A(t), ϕp(t) are sufficiently smooth func-
tions. Differentiate and substitute in (21), then
the coefficients with the harmonics consider equals
zero. It may be get the following differential equa-
tions

2Ȧϕ̇p + Aϕ̈p = 0 ,

Ä − Aϕ̇2
p + UA = 0 .

Under condition of representing the desired fre-
quency as exponential function of time

ϕp = κ exp(kt) + µ, κ, k 6= 0 ,

these differential equations have the following so-
lutions

A = c exp(−k

2
t), c = const ,

U(t) = k2κ2t exp(2kt) − k2

4
.

In second figure there are graphics of the functions
y(t), ẏ(t) for the parameters κ = 1, k=1, µ = 0,
y(0) = sin(1), ẏ(0) = cos(1) − sin(1)/2 under the
abovementioned control.
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