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Abstract: One of the main problems of classical robust control approaches is that
if a set of specifications are not fulfilled for a family of plants being considered,
they must be relaxed. However, not all the plants in the family will be equally
possible in practice. In this paper, a fuzzy set in a linear plant space will be used
to associate a possibility to each member in the family. Then, a controller will be
designed so that a fuzzy set of specifications is achieved. The core of this set will
define the hard specifications to be achieved by the most possible plants, while the
support will represent the minimum specifications required to the whole family of
plants. Intermediate cuts define how performance is allowed to degrade. Several
design methodologies are presented. Copyright c©2005 IFAC
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1. INTRODUCTION.

Fuzzy control has been a successful technique in
the application field, mainly due to the paral-
lelism with human reasoning schemes. Fuzzy or
neuro-fuzzy systems usually act as universal func-
tion approximators (UFA) used in implementation
of nonlinear controllers (White and Sofge, 1992;
Wang, 1994; Brown and Harris, 1994).

Robust control (RC) (Zhou et al., 1995), based on
classical foundations, has also reached maturity as
a technique for linear systems capable of dealing
with uncertainty in multivariable models under
quite general assumptions. Quantitative Feedback
Theory (Horowitz, 1993) deals with structured
frequency-dependent uncertainty. Parametric Ro-
bust Control (Bhattacharyya et al., 1995) consid-
ers interval parameters.

One problem RC designs have is conservativeness.
Apart from the conservativeness of some of the
solutions provided by standard techniques (the
non-conservative solutions in a general µ-synthesis
case may be NP-hard with no a priori bound
on the controller complexity), at the core of the
techniques lies the issue of trying to ensure satis-
factory performance for a whole family of systems.
Sometimes a solution cannot be found because the
set of possible plants is too large. In that case,
specifications have to be degraded or the family
of systems must be reduced leaving out infrequent
cases, without performance guarantees for them.

This work stems from previous papers by the
authors (Bondia et al., 2004a; Bondia and Picó,
2003; Bondia et al., 2004b), setting up the main
ideas in an unified approach and also putting
forward some tools based on interval arithmetic.
The focus of this research is to pose the problem of



differentiating worst-case performance from most-
cases performance and trying to solve simultane-
ously both problems, for the particular case of
SISO linear uncertain-parameter systems. Fuzzy
sets will be used as a convenient tool to express
both the parameter space and the specifications.
On one hand, fuzzy plant parameters will be as-
sumed to be the result of identification (the core
of the fuzzy set is expected to contain a good
approximation to the true plant in the majority of
cases and the support will be assumed to contain
all possible values of them); on the other hand,
on the specification space, the core of the set will
denote the requested most-cases behaviour, the
support of the set will denote the worst-case limit
of acceptability (for example very low stability
margins).

The problem can be cast as requesting inclusion of
all α-cuts 0 ≤ α ≤ 1 of the closed-loop plant into
the corresponding cut of the desired specifications.
A simpler case could be considering only the core
and support of the sets, (similar to a rough set
approach).

2. FUZZY OPEN-LOOP MODELS

In this paper, fuzzy models are used to represent
uncertainty, departing from using them as UFA
with no associated uncertainty.

Fuzzy open-loop models can be the result of
various ID algorithms. For example, in black-box
ID, there are prior assumptions that constitute
the tuning knobs, such as noise bounds, variances,
etc. not precisely known which may be represented
as fuzzy sets. So, a fuzzy set model will result from
the application of ID algorithms.

A related situation is the design of controllers for
a family of plants with some spread in parameter
values. There are two extreme situations: one of
them is identifying each of the systems and tuning
individual optimised controllers and, on the other
hand, relaxing the specifications so that a unique
controller can cope with all plants. If there is a
wide parameter variation, the level of performance
quality loss in all units can be unacceptable so
that a compromise needs to be reached.

So, although the ideal case would be to find
a fixed controller able to perform satisfactorily
in all plants in the above family, if it cannot
be found (maybe due to conservativeness of the
chosen design techniques), a fuzzy set of plant
parameters can be described so that when mapped
to a fuzzy set of specifications it will yield good
performance in the majority of the possible plants
(those belonging to the user-defined core, µ = 1),
but with a reduced fraction of them, significantly
off-specifications, it will yield a suitably defined

second-class performance (support, µ > 0), unless
individual retuning is carried out.

3. PROBLEM STATEMENT

Once a plant model with fuzzy uncertainty, P̃ ,
is available, a control design must be pursued.
The designed controller will be a deterministic
dynamical system K, obviously with no associated
uncertainty.

For each plant P ∈ P, the action of the con-
troller K in closed-loop produces a particular
behaviour evaluated in terms of a performance
measure J(P,K). Letting K being constant, the
performance measure defines an evaluation map:
JK : P → S where S is a specification space.

A target specification will be defined as a fuzzy
subset of S, denoted as S̃. For instance, the
evaluation map might map a process to a real
number, this number being any optimal-control
related cost index. A (crisp) target specification
would be a desired cost in an interval [0, γ]. This
is, indeed, a common setup (Zhou et al., 1995).
Other specification spaces are analysed in section
4.

Given a fuzzy plant P̃ , the fuzzy image set J̃ =
JK(P̃ ) will be defined as:

πJ̃(s) = max
P∈P,JK(P )=s

πP̃ (P ) (1)

In this context, the control design problem can be
cast as an inclusion problem.

Design problem.- Given a plant P̃ and a spec-
ification set S̃, design a fixed controller K such
that

JK(P̃ ) ⊂ S̃. (2)

The inclusion must be understood in terms of α-
cuts. Denoting by P̃α and S̃α the corresponding
α-cuts of the fuzzy sets,

JK(P̃α) ⊂ S̃α

In this way, a fuzzy set of plants must be mapped
by the controller to a subset of a fuzzy set of
target specifications, indicating that it will yield
good performance in the majority of the proto-
types (core) but with a reduced fraction of them,
unlikely or off-specification situations, it will yield
a user-defined degradation of performance.

4. DEFINING FUZZY SPECIFICATIONS.

The design methodology employed to solve (2)
will depend on the selected specification space.
Currently, two specification spaces have been ex-
plored: reference models and characteristic poly-
nomials.



4.1 Fuzzy reference models.

Let S be the set of transfer functions in a given
class of reference models. The fuzzy set S̃ defines
a fuzzy family of reference models. The cut Sα

will define the family of target reference models
for the corresponding cut of the plant, so that
for any plant in Pα, the controller must map the
closed-loop to an element in Sα.

For instance, in many cases the desired behaviour
corresponds to that of a first or second order

M(s, r̃) =
k̃

1 + τ̃ s
, (3)

M(s, r̃) =
k̃

1 + 2ξ̃ s
ω̃n

+
(

s
ω̃n

)2 (4)

Modal interval arithmetic (Gardeñes et al., 1985;
SIGLA/X and Sáinz, 2001) can be applied to ob-
tain the fuzzy parameters of (3)-(4) from classical
specifications such steady-state error, overshoot
and settling time, as shown in the following ex-
ample.

Example 4.1. Consider that a second order-like
response is sought with steady-state error ẽp[%] =

tri(−1, 0, 1), overshoot δ̃[%] = tri(0, 0, 10) and
settling time t̃s[s] = trap(1, 1.5, 4, 4).

The specifications will be assured by the second
order reference model (4) with gain, damping
factor and natural frequency α-cuts:

kα = 1 +
ep,α

100
= 1 +

[α− 1,−α + 1]

100

ξα =

√

1

1 + π2

ln2(0.01δα)

=

√

1

1 + π2

ln2([0,−0.1α+0.1])

ωn,α =
4

ts,αdu(ξα)
=

4

[0.5α + 1, 4]du(ξα)

where du([a, b]) = [b, a]. For instance, for α = 0:

k0 = [0.99, 1.01], ξ0 = [0.592, 1], ωn,0 = [1.692, 4]

From the practical point of view this may be too
restrictive. Usually, the order of the closed-loop
is not so important as to behave like the family
of reference models in some sense. For instance,
in terms of the frequency response of the closed-
loop plant, which is required to be included for
each frequency into the frequency response of the
family of reference models (figure 1). In this case,
S̃ will be the frequency response of a fuzzy set of
reference models.

In other cases, a desired frequency response may
be built by adding to a nominal target closed
loop a particular used-defined tolerance δ(ω), in
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Fig. 1. Feasible frequency response for a given α-
cut.

the spirit of conventional robust control (Zhou et
al., 1995). In this case, however δ(ω) may be a
fuzzy set.

The assumption is made that any frequency re-
sponse inside the proposed envelope will yield a
satisfactory time response, even if the resulting
loop is not a first- or second-order model (3),
(4). Experience with the results from the tools
described in Section 5 shows that this is true in
most situations.

4.2 Fuzzy characteristic polynomials.

Alternatively, S may be defined as the coefficient’s
space of a polynomial. In this case, the fuzzy
specifications S̃ will correspond to a fuzzy char-
acteristic polynomial

p̃(s) =

n
∑

i=0

ãis
i (5)

defining where the closed-loop poles are desired
to be located. As the coefficients of (5) are con-
sidered to be independent, the Edge Theorem
(Bhattacharyya et al., 1995) can be applied to plot
the boundary the poles location of each α-cut of
interest, as shown in the next example.

Example 4.2. Figure 2 shows the boundary of the
poles of the polynomial

s3 + [3, 5]s2 + [6, 11]s + [9, 12] (6)

This can be evaluated from the following twelve
root locus problems:

1 + [3, 5]
s2

s3 + a1s + a0
, a1 ∈ {6, 11}, a0 ∈ {9, 12}

1 + [6, 11]
s

s3 + a2s2 + a0
, a2 ∈ {3, 5}, a0 ∈ {9, 12}

1 + [9, 12]
1

s3 + a2s2 + a1s
, a2 ∈ {3, 5}, a1 ∈ {6, 11}

5. CONTROLLER DESIGN.

Once defined the fuzzy set of specifications S̃, a
controller K must be designed so that

JK(P̃α) ⊂ S̃α (7)
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where JK(·) is the mapping of the open-loop
plant in the specifications space induced by the
controller K.

Denoting by Kαr,αp the set of controllers so that
JK(P̃αp

) ⊂ S̃αr
, the solution to (7) is given by

K :=
⋂

α∈[0,1]

Kα,α (8)

Evidently, if a solution K1,0 exists then it is a
solution for the problem since K1,0 ⊂ K0,0 because
core(S̃) ⊂ support(S̃).

To obtain K, a discretisation on α will have to
be done, obtaining for each α-cut under consid-
eration the set of controllers solving the prob-
lem. To achieve this, interval methods (Jaulin
et al., 2001; COCONUT, 2001) are particularly
suitable for two reasons: (a) for an α-cut the
fuzzy problem reduces to an interval problem,
and (b) interval methods are oriented towards
obtaining sets of solutions, as in (8). Furthermore,
the solutions obtained are guaranteed to fulfill the
specifications.

Next, some design examples are given introduc-
ing two different interval approaches: branch-
and-prune algorithms and algebraic solutions by
means of modal interval arithmetic.

Example 5.1. (Frequency-response inclusion).
In (Bondia, 2002; Bondia and Picó, 2003) a
methodology for dealing with interval parametric
uncertainty is presented, to tune the frequency
response of an uncertain set of continuous plants
so that it is included in a specified set of speci-
fications in the Nyquist diagram by using a LTI
two-degree of freedom configuration (figure 3).

Specifications are given in terms of an uncertain
reference model M(s, r̄), where r̄ is an interval pa-

rameter vector. This reference model captures the
desired closed-loop frequency response M(jω) :=
{M(jω, r) | r ∈ r̄}.

The problem to be solved is obtaining F and C
so that the inclusion Glc(jω) ⊆ M(jω) holds for
ω ∈ Ω, where Glc denotes the family of closed-loop
frequency responses: Glc(jω) := {FCP (q)/(1 +
CP (q)) | q ∈ q̄}.

Under some mild considerations, the problem can
be formulated as a constraint satisfaction problem
(CSP) on the controller parameters θ̄ (Bondia et
al., 2004b; Bondia et al., 2004a). This CSP may be
solved by the algorithm SIVIA (Set Inversion via
Interval Analysis) (Bondia et al., 2004b; Jaulin
et al., 2001; COCONUT, 2001). As result, two
subpavings consisting of an internal and external
approximation of the solution set is obtained. All
the elements in the internal subpaving will be
a guaranteed solution of the CSP, whereas the
external subpaving may contain no solutions. An
important advantage of the algorithm is that, if
the external subpaving is empty, it is guaranteed
that the CSP has no solution, indicating that
other specifications must be used.

As an example, consider the plant

P (s, q̃) =
b̃

(s + ã)(s + c̃)
(9)

with trapezoidal fuzzy sets:

ã = trap(0.75, 1, 1.5, 1.8),

b̃ = trap(0.75, 1, 2, 2),

c̃ = trap(9.5, 10.10.5, 11).

Hard specifications are given by the reference
model

M(s, r̄) =
K̄

(

(

s
ω̄n

)2

+ 2ζ̄
ω̄n

s + 1

)

(10s + 1)

(10)

with K̄ = [0.99, 1.01], ζ̄ = [0.45, 2], ω̄n =
[0.5926, 2]. A PI controller C(s,θ) = Kp + Ki

1
s

is considered without prefilter, N(s) = 1.

Frequency response inclusion is sought for Ω :=
{0.001, 0.01, 0.1, 1, 10} rad/s. For ω > 10 rad/s,
inclusion may not hold. However, stability will
be guaranteed by means of an interval Routh-
Hurwitz test (Barmish, 1994).

The above specifications cannot be fulfilled by the
whole family of plants (the external approxima-
tion of the solution set of the corresponding CSP
is empty). Thus, the following soft specifications
are defined:

K̄ = [0.9, 1.1], ζ̄ = [0.3, 5], ω̄n = [0.5333, 8]
(11)
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Figure 4 shows the internal approximation ob-
tained for K0,0 and K1,1 for a precision of 0.01
in the SIVIA algorithm. Any controller in the
intersection will guarantee the fulfillment of the
hard specifications for the core of plants, whereas
for the whole family of plants, a performance no
worse than the soft specifications will be achieved.
For instance, a feasible regulator is:

C(s) = 0.026 +
4.8

s
(12)

Figure 5 shows the frequency response inclusion
for a frequency of 1 rad/s. Figure 6 shows the
obtained time response for illustration (envelopes
of time responses of a grid of the core/support
family of plants/specifications).

Example 5.2. (Fuzzy pole-placement). Let the
second order plant

P (s, q̃) =
k̃

s2 + ã1s + ã0
(13)

be given. Consider

k̃ = trap(1.1, 1.2, 1.3, 1.5)

ã1 = trap(0.3, 0.4, 0.7, 0.8)

ã0 = trap(0.02, 0.03, 0.05, 0.07) (14)

and a PD controller C(s,θ) = kp + kds. A desired
closed-loop characteristic polynomial is defined as

p(s, r̃) = s2 + r̃1s + r̃0 (15)

where r̃1 = trap(2.5, 6, 8, 10) and r̃0 = trap(10, 10,
16, 60).

Closed-loop coefficients are, for fixed α, a1,α +
kαkd,α and a0,α + kαkp,α, so they must verify:

a1,α + kαkd,α ⊆ r1,α

a0,α + kαkp,α ⊆ r0,α (16)

A fuzzy box kd,α × kp,α will be a solution to the
system of equations (16) if and only if

∀kd ∈ kd,α,∀a1 ∈ a1,α,∃r1 ∈ r1,α | a1 + kd = r1

∀kp ∈ kp,α,∀a0 ∈ a0,α,∃r0 ∈ r0,α | a0 + kp = r0

Solving for the controller parameters in (16)

k∀d,α =
r∃1,α − a∀1,α

k∀α
, k∀p,α =

r∃0,α − a∀0,α

k∀α
(17)

where the corresponding modality (∃,∀) has been
assigned to each variable as superscript. As they
are rational uni-incident functions, modal interval
arithmetic (Gardeñes et al., 1985; SIGLA/X and
Sáinz, 2001) can be applied to obtain the desired
semantics. It corresponds to the following interval
evaluation

kd,α =
r1,α − du(a1,α)

du(kα)
, kd,α proper (18)

kp,α =
r0,α − du(a0,α)

du(kα)
, kp,α proper (19)

where an interval [a, b] is proper if a ≤ b. Figure
7 shows the result obtained for the defined plant
and specifications.

Figures 8 and 9 show the closed-loop poles for
the support and kernel respectively considering
the controller kd = 5, kp = 11.5. In both plots
the dark boundary indicates the poles of the de-
sired characteristic polynomial whereas the light
boundary indicates the closed-loop poles for the
chosen controller. As it can be seen, specifications
are fulfilled.
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6. CONCLUSIONS.

In this paper, the problem of achieving good per-
formance for a set of likely plants while controlling
its degradation for a wider family of them has
been discussed. The framework uses fuzzy plant
models (from identification or fuzzy uncertainty
in physical parameters), and defines a fuzzy spec-
ification set.

Different fuzzy specifications are analyzed such as
fuzzy reference models representing the desired
time/frequency response and fuzzy characteristic
polynomials under the framework of fuzzy pole
placement. In both cases, interval analysis is used
to design the controller. Refinement and generali-

sation of the procedures here presented by exam-
ples is under research.
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