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Abstract: In this paper, we consider the robust filtering problem for discrete
time-varying systems with sensor delayed measurement subject to norm-bounded
parameter uncertainties. The sensor delayed measurement is assumed to be a linear
function of a stochastic variable that satisfies Bernoulli random binary distribution.
An upper bound for the actual covariance of uncertain stochastic parameter system
is derived, and is used for the estimation variance constraints. Such an upper
bound is then minimized over the filter parameters for all stochastic sensor delays
and admissible deterministic uncertainties. It is shown that the desired filter can
be obtained in terms of solutions to two discrete Riccati difference equations,
which are of a form suitable for recursive computation in online applications.
An illustrative example is presented to show the applicability of the proposed
method.Copyright c© 2005 IFAC
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1. INTRODUCTION

Kalman filtering has proven to be very popular in
a number of research areas such as signal process-
ing and communication (Anderson and Moore,
1979). Since Kalman filtering algorithm is very
sensitive to model structure drifts (Anderson and
Moore, 1979), how to guarantee the robust per-
formance of the Kalman filter in the presence of
system parameter uncertainties has become an
important issue, and has gained considerable at-
tention from many researchers. A large volume
of literature has been published on the general
topic of robust and/or H∞ filtering problems for
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systems with various parameter uncertainties, see
e.g.(Fridman and Shaked, 2001; Hung and Yang,
2003; Petersen and Savkin, 1999; Shaked et al.,
2001; Theodor and Shaked, 1996; Wang and Bal-
akrishnan, 2002; Xie et al., 1994; Zhu et al., 2002)
and references therein.

On the other hand, it is implicitly assumed in
Kalman filtering approach that the sensor data,
which may be corrupted by noise, always con-
tain information about the current state of the
plant. However, it is not always the case in en-
gineering systems, biological systems, and eco-
nomical systems, where the system measurements
(outputs) may be delayed, and this could cause
performance degradation or even instability of
the traditional Kalman filters (Mahmoud, 2000;
Malek-Zavarei and Jamshidi, 1987). Therefore,
the filtering problem with delayed measurements
has been a research subject recently, and many
results have been published, most of which assume
that the time-delay in the measurement is al-



ways deterministic. Unfortunately, the time delay
may occur in a random way in a large class of
practical applications. For example, in real-time
distributed decision-making and multiplexed data
communication networks, the measurement device
or the sensor is often randomly delayed, or the
measurements are interrupted so that the mea-
surements available to the predictor may not be
up-to-date (Ray, 1994; Wang et al., 2004; Yaz and
Ray, 1996). Hence, there is a need to develop new
filtering methods for signal processing problems in
a delayed environment of general network-based
systems.

Up to now, there have been several papers dis-
cussing the filter design issue with randomly
varying delayed measurements. In (Yaz and Ray,
1996), a linear unbiased state estimation problem
has been dealt with for discrete-time systems with
random sensor delay over both finite-horizon and
infinite-horizon, where the full and reduced-order
filters have been designed to achieve a certain
estimation error covariance. The results of (Yaz
and Ray, 1996) have been extended in (Wang et
al., 2004) to the case where the parameter un-
certainties (modeling error) have been taken into
account. However, in (Wang et al., 2004), only
the stationary (infinite-horizon) robust filtering
problem has been studied. It is well know that
finite-horizon filters could provide a better tran-
sient performance for the filtering process systems
where the noise inputs are nonstationary. It is,
therefore, our aim in this paper to further study
the finite-horizon counterpart of (Wang et al.,
2004). That is, we intend to tackle the finite-
horizon filtering problem for uncertain discrete
time-varying systems subject to both randomly
varying sensor delay and parameter uncertainties.
Different from (Wang et al., 2004), in this paper,
the nominal system is allowed to be time-varying,
and an optimization approach is used that is based
on the solutions to two discrete Riccati difference
equations.

In this paper, we are concerned with the robust
filtering problem for discrete time-varying sys-
tems with sensor delayed measurement subject
to norm-bounded parameter uncertainties. The
sensor delayed measurement is assumed to be a
linear function of a stochastic variable that sat-
isfies Bernoulli random binary distribution. An
upper bound for the actual covariance of uncertain
stochastic parameter system is derived, and is
used for the estimation variance constraints. Such
an upper bound is then minimized over the filter
parameters for all stochastic sensor delays and
admissible deterministic uncertainties, which ren-
ders the filter design problem a sub-optimal one. A
Riccati difference equation approach is developed
to design the expected filter parameters. Such an
approach is suitable for recursive computation in

online applications. We illustrate the applicability
of the proposed method by means of a simulation
example.

Notation. The notation used here is fairly stan-
dard. Rn and Rn×m denote, respectively, the n di-
mensional Euclidean space and the set of all n×m
real matrices. The notation X ≥ Y (respectively,
X > Y ) where X and Y are symmetric matrices,
means that X − Y is positive semi-definite (re-
spectively, positive definite). Aii denotes diagonal
block sub-matrix of matrix A with respect to the
ith row and ith column. xi represents the ith
element of vector x. Cov(x) means the covariance
of x. The superscript “T” denotes the transpose.
E{x} stands for the expectation of x. Prob{·}
means the occurrence probability of the event “·”.
Sometimes, the arguments of a function will be
omitted in the analysis when no confusion can
arise.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a class of uncertain linear discrete time-
varying systems

x̆k+1 = (Ăk + ∆Ăk)x̆k + B̆kwk, (1)

where x̆k ∈ Rn is a state vector, wk ∈ Rn

is a zero mean Gaussian white noise sequence
with covariance Qk > 0. The delayed sensor
measurement is described by

y̆k = C̆kx̆k + v̆k, (2)

yk = (1− γk)y̆k + γky̆k−1, (3)

where y̆k ∈ Rp is an actual output vector, yk ∈ Rp

is a measured output vector, and v̆k ∈ Rp a
zero mean Gaussian white noise sequence with
covariance R̆k > 0 which is uncorrelated with
wk. The initial state x̆0 has the mean x̄0 and
covariance P0, and is uncorrelated with either
w(k) or v̆(k). Ăk,B̆k and C̆k are known real time-
varying matrices with appropriate dimensions.
∆Ăk is a real-valued uncertain matrix satisfying

∆Ăk = H̆kFkĔk, FkFT
k ≤ I. (4)

Here, H̆k and Ĕk are known time-varying matrices
of appropriate dimensions, and Fk represents the
time-varying uncertainties. The parameter uncer-
tainty in ∆Ăk is said to be admissible if (4) holds.

The stochastic variable γk ∈ R is a Bernoulli
distributed white sequence taking values on 0 and
1 with

Prob{γk = 1} = E{γk} := βk, (5)

where βk ∈ R is a known time-varying positive
scalar, and γk ∈ R is assumed to be independent
of wk, v̆k, and x̆0. Therefore, we have



Prob{γk = 0} = 1− βk, (6)

σ2
γ := E{(γk − βk)2} = (1− βk)βk. (7)

Remark 1. The system measurement mode (3)
was introduced in (Ray, 1994; Wang et al., 2004;
Yaz and Ray, 1996), which can be used to rep-
resent the system output subject to randomly
varying state delay. It can be easily seen that, at
kth sampling time, the actual system output takes
the value y̆k−1 with probability βk, and the value
y̆k with probability 1− βk.

By defining

xk :=
[

x̆k

x̆k−1

]
, Ak :=

[
Ăk 0
In 0

]
,

Hk :=
[

H̆k

0

]
, Ek :=

[
Ĕk 0

]
,∆Ak := HkFkEk,

Ck(γk) =
[
(1− γk)C̆k γkC̆k−1

]
, Bk =

[
B̆k

0

]
,

Dk(γk) =
[
(1− γk)Ip γkIp

]
, vk =

[
v̆k

v̆k−1

]
,

we combine the uncertain system (1) and the
sensor delayed measurement (2)-(3) as follows:

xk+1 = (Ak + ∆Ak)xk + Bkwk, (8)

yk = Ck(γk)xk + Dk(γk)vk, (9)

where vk is a zero mean Gaussian white noise
sequence with covariance

Rk :=
[

R̆k 0
0 R̆k−1

]
, (10)

and is independent of wk, γk, and x̆0. Since Ck(γk)
and Dk(γk) involve the stochastic variable γk, the
system (8)-(9) is in fact a stochastic parameter
system.

Denoting

C̄k = E[Ck(γk)] =
[
(1− βk)C̆k βkC̆k−1

]
, (11)

and

D̄k = E[Dk(γk)] =
[
(1− βk)Ip βkIp

]
, (12)

we can rewrite (9) as

yk = C̄kxk + D̄kvk + C̃k(γk)xk + D̃k(γk)vk,(13)

where

C̃k(γk) := Ck(γk)− C̄k =
[

(βk − γk)C̆k (γk − βk)C̆k−1

]

= (γk − βk)
[
−C̆k C̆k−1

]
= (γk − βk)Cek, (14)

D̃k(γk) := Dk(γk)− D̄k =
[

(βk − γk)Ip (γk − βk)Ip

]

= (γk − βk)
[
−Ip Ip

]
= (γk − βk)Dek, (15)

Cek :=
[
−C̆k C̆k−1

]
, Dek :=

[
−Ip Ip

]
. (16)

It can be shown that C̃k(γk) ∈ Rp×2n and
D̃k(γk) ∈ Rp×2p are zero mean stochastic matrix

sequences. In this paper, a full-order filter is of the
following structure:

x̂k+1 = Âkx̂k + K̂k(yk − C̄kx̂k), (17)

where x̂k ∈ R2n is the state estimate of the
stochastic parameter system (8)-(13), and Âk and
K̂k are filter parameters to be determined.

Remark 2. It can be noticed that the system un-
der consideration is both stochastic and uncertain,
whereas the designed filter depends on neither
the stochastic parameter nor the parameter un-
certainty, which facilitates its implementation.

The objective of this paper is twofold. First, we
intend to design a finite-horizon filter (17) such
that there exists a sequence of positive-definite
matrices Θk(0 < k ≤ N) satisfying

E[(xk − x̂k)(xk − x̂k)T ] ≤ Θk, ∀k. (18)

That is, a finite upper bound for the estimation
error variance is guaranteed. Second, we shall
minimize such a bound Θk in the sense of the
matrix norm, and then obtain an optimized filter.
This problem will be referred to as a finite-horizon
robust filtering problem.

3. COVARIANCE AND ITS UPPER BOUND

It is noted that in the last section, the system
parameters in (13) contain stochastic terms due to
sensor delayed measurement. Therefore, we need
to derive the estimation error covariance and then
obtain a corresponding upper bound. For this
purpose, we define a new state vector by

x̃k =
[

xk

x̂k

]
, (19)

and then an augmented state-space model com-
bining the system (8) and the filter (17) can be
expressed by

x̃k+1 = (Ãk + H̃kFkẼk)x̃k + Ãekx̃k

+B̃1kwk + B̃2kvk + B̃ekvk, (20)

where

Ãk =
[

Ak 0
K̂kC̄k Âk − K̂kC̄k

]
, H̃k =

[
Hk

0

]
,

Ẽk =
[
Ek 0

]
, Ãek =

[
0 0

K̂kC̃k(γk) 0

]
,

B̃1k =
[

Bk

0

]
, B̃2k =

[
0

K̂kD̄k

]
, B̃ek =

[
0

K̂kD̃k(γk)

]
.

Note that Ãk, H̃k, Ẽk, B̃1k and B̃2k are determin-
istic parameters, and Ãek and B̃ek are stochastic
parameters having zero mean values. Hence, the
augmented system (20) is still a stochastic param-
eter system. Denote the state covariance matrix of
the augmented system (20) by



Σ̃k := E[x̃kx̃T
k ] = E

{[
xk

x̂k

] [
xk

x̂k

]T
}

. (21)

Since Ãek and B̃ek are zero mean stochastic ma-
trix sequences in (20), we have the following Lya-
punov equation that governs the evolution of the
covariance matrix Σ̃k from (20):

Σ̃k+1 = (Ãk + H̃kFkẼk)Σ̃k(Ãk + H̃kFkẼk)T + Ψk

+B̃1kQkB̃T
1k + B̃2kRkB̃T

2k + Φk, (22)

where

Ψk : = E[ÃekΣ̃kÃT
ek]

= δk

[
0 0

K̂kCek 0

]
Σ̃k

[
0 0

K̂kCek 0

]T

,(23)

Φk : = E[B̃ekRkB̃T
ek]

= δk

[
0

K̂kDek

]
Rk

[
0

K̂kDek

]T

, (24)

with

δk = (1− βk)βk (25)

It is noted that the deterministic uncertainty Fk

appears in (22). Therefore, it is impossible to have
the exact value of the covariance matrix Σ̃k. An
alternative way is to find a set of upper bounds for
Σ̃k, and then obtain the minimum with respect to
the filter parameters Âk and K̂k.

In the following, we will provide an upper bound
for Σ̃k. Before giving the upper bound, we present
two lemmas.

Lemma 1. (Xie et al., 1994) Given matrices A, H, E
and F with compatible dimensions such that
FFT ≤ I. Let X be a symmetric positive defi-
nite matrix and α > 0 be an arbitrary positive
constant such that α−1I − EXET > 0, then the
following inequality holds:

(A + HFE)X(A + HFE)T

≤ A(X−1 − αET E)−1AT + α−1HHT . (26)

Lemma 2. (Theodor and Shaked, 1996) For 0 ≤
k ≤ N , suppose X = XT > 0, and sk(X) =
sT

k (X) ∈ Rn×n, hk(X) = hT
k (X) ∈ Rn×n. If there

exists Y = Y T > X such that

sk(Y ) ≥ sk(X), (27)

and

hk(Y ) ≥ sk(Y ), (28)

then the solutions Mk and Nk to the following
difference equations

Mk+1 = sk(Mk), Nk+1 = hk(Nk),M0 = N0 > 0,

(29)

satisfy Mk ≤ Nk.

The following corollary can be obtained imme-
diately from Lemma 1 and (22), which provides
a matrix recursive inequality for computing the
actual covariance.

Corollary 1. If there exists an αk such that
α−1

k I−ẼkΣ̃kẼT
k > 0, then the following inequality

Σ̃k+1 ≤ Ãk(Σ̃−1
k − αkẼT

k Ẽk)−1ÃT
k + α−1

k H̃kH̃T
k

+B̃1kQkB̃T
1k + B̃2kRkB̃T

2k + Ψk + Φk(30)

holds from (22).

Corollary 1 has “eliminated” the uncertainty Fk

in matrix equation (22). In the following, in order
to design the quadratic filter associated with a
positive definite matrix satisfying a Riccati-like
inequality (Xie et al., 1994), we proceed to pro-
pose the notion of “identity quadratic filter” for
the uncertain system (20) that is associated with
a sequence of positive definite matrices satisfying
a Riccati-like equation (understood as “identity”
here) for all Âk and K̂k.

Definition 1. The filter (17) is said to be an iden-
tity quadratic filter associated with a sequence of
matrices Σk = ΣT

k ≥ 0 (0 ≤ k ≤ N) if, for some
positive scalars αk (0 ≤ k ≤ N) ), the sequence
Σk satisfies

Σk+1 = Ãk(Σ−1
k − αkẼT

k Ẽk)−1ÃT
k + α−1

k H̃kH̃T
k

+B̃1kQkB̃T
1k + B̃2kRkB̃T

2k + Ψk + Φk,(31)

and

α−1
k I − ẼkΣkẼT

k > 0. (32)

Remark 3. In this paper, our primary objective is
to find an upper bound for state estimation error
variance and then minimize such an upper bound.
It will be shown in the sequel that, if we could
design an identity quadratic filter of the form
(17), i.e., there exist positive definite solutions Σk

to (31) and (32), then Σk is an expected upper
bound, and a solution to the optimization problem
can be found. Hence, it is important to investigate
the existence as well as the solving algorithm for
the solution to the recursive matrix equation (31).

Based on Definition 1 and Lemma 2, we have
the following conclusion, which shows that the
solution Σk to (31)-(32) indeed provides an upper
bound for the error covariance matrix Σ̃k in (22).



Theorem 1. Given Σ̃k and Σk satisfying (22) and
(31)-(32), respectively. If Σ0 = Σ̃0, then we have

Σ̃k ≤ Σk. (33)

Furthermore, in the light of Definition 1 and The-
orem 1, we have the following corollary readily.

Corollary 2. The following inequality holds:

E[(xk − x̂k)(xk − x̂k)T ] =
[
I −I

]
Σ̃k

[
I −I

]T

≤ [
I −I

]
Σk

[
I −I

]T
, ∀k. (34)

From Theorem 1 and Corollary 2, it is clear that, if
(31) has symmetric positive definite solutions Σk

such that α−1
k I − ẼkΣkẼT

k > 0, then the upper
bound for the state estimation error variance can
be obtained as Σk. Such solutions are, of course,
not unique in general. In next section we will try
to solve (31) while selecting the filter parameters
Âk and K̂k so that the upper bound obtained is
minimized.

4. FINITE-HORIZON SUB-OPTIMAL FILTER
DESIGN

In this section, we will design the filter based on
the upper bound for the state estimation error
variance. Firstly, we will provide sufficient condi-
tions for the existence of the identity quadratic
filter (17) which satisfies the constraints for the
upper bound of actual state estimation error vari-
ance. Secondly, we will design the filter that opti-
mizes the upper bound of actual state estimation
error variance.

An identity quadratic filter is found in the follow-
ing theorem.

Theorem 2. Let αk > 0 be a sequence of positive
scalars. If the following two discrete-time Riccati-
like difference equations

Θk+1 =−Ak(Θ−1
k − αkET

k Ek)−1C̄T
k R−1

1,kC̄k(Θ−1
k −

αkET
k Ek)−1AT

k + Ak(Θ−1
k − αkET

k Ek)−1AT
k

+α−1
k H1,kHT

1,k + BkQkBT
k , Θ0 = S1, (35)

and

Pk+1 = Ak(P−1
k − αkET

k Ek)−1AT
k + α−1

k H1,kHT
1,k

+BkQkBT
k , P0 = S0 ≥ S1, (36)

have positive-definite solutions Θk and Pk such
that

α−1
k I − EkPkET

k > 0, (37)
then there exists an identity quadratic filter (17)
with parameters

Âk = Ak+(Ak−K̂kC̄k)ΘkET
k (α−1

k I−EkΘkET
k )−1Ek,
(38)

and

K̂k = Ak(Θ−1
k − αkET

k Ek)−1C̄T
k R−1

1,k, (39)

where

R1,k = D̄kRkD̄T
k + δkDekRkDT

ek + δkCekPkCT
ek

+C̄k(Θ−1
k − αkET

k Ek)−1C̄T
k , (40)

such that the state estimation error variance sat-
isfies boundedness condition

E[(xk − x̂k)(xk − x̂k)T ] ≤ Θk, ∀k. (41)

In the following theorem, we will prove that the
filter (17) with parameters (38) and (39) is an
optimal filter.

Theorem 3. If (35) and (36) have positive-definite
solutions Θk and Pk such thatα−1

k I −EkPkET
k >

0. Then the identity quadratic filter (17) with
parameters (38) and (39) minimizes the bound
Θk.

Remark 4. Theorem 2 and Theorem 3 provide
the optimal filter design by optimizing the upper
bound for state estimation error variance. One-
step ahead variance bound is optimized by select-
ing the filter parameters Âk and K̂k as in (38)
and (39) under given scaling parameter αk. The
optimization is step by step by solving the Riccati-
like difference equations (35) and (36).

5. A NUMERICAL EXAMPLE

Consider the following discrete time-varying un-
certain system with random sensor delay measure-
ment:





x̆k+1 =
( [

0 0.1 sin(6k)
0.2 0.3

]

+
[

0.5
1

]
Fk

[
0.2 0.1

] )
x̆k +

[
1

0.5

]
wk,

y̆k =
( [

0.5 + 0.3 sin(6k) 1
]
x̆k + v̆k,

yk = (1− γk)y̆k + γky̆k−1

x̆0 =
[
1 0

]T

where Fk = sin(0.6k) is a deterministic pertur-
bation matrix satisfying FkFT

k ≤ I, and both
wk and v̆k are zero mean Gaussian white noise
sequences with unity covariances. The stochastic
variable γk ∈ R is a Bernoulli distributed white
sequence taking values on 0 and 1 with Prob{γk =
1} = E{γk} = 0.95.

We choose αk = 3 in this example. Using Theorem
2 under the initial conditions of S0 = 2I4 and
S1 = I4, the filter is obtained by solving (35) and
(36). The plots of upper bounds Θ11

k and Θ22
k as

well as the actual variances for the states x1
k and



x2
k are given in Fig. 1. It can be seen that the ac-

tual variances for the states stay below their upper
bounds. Therefore the proposed design method
provides an expected variance constraint. These
plots confirm that the proposed design require-
ments are achieved.
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Fig. 1. The actual variances and their upper bounds,

where Err1=x1
k − x̂1

k and Err2=x2
k − x̂2

k.

6. CONCLUSIONS

A new robust filtering problem with sensor de-
layed measurement has been considered for dis-
crete time-varying systems subject to norm-
bounded parameter uncertainties. An algorithm
has been provided for designing a finite-horizon
filter which guarantees an optimized upper bound
on the state estimation error variance, for all
stochastic sensor delays and admissible determin-
istic uncertainties. Simulation results demonstrate
the feasibility of our algorithm. One of our future
research topics would be the design of reduced-
order filters within the same framework.
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