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Abstract: Modern approaches for engine control assume the knowledge of the dynamic 
properties connecting the engine via driveline to the road. A formally identical problem 
arises when a combustion engine is operated on a test bench, with an electrical machine 
simulating the wheel load. While in some cases design information allows sufficient 
estimation of the parameters, in many other cases it may prove more adequate to 
determine them using measurements. This is usually complicated by the fact that 
measurements of driveline quantities are disturbed by gas exchange in the cylinder. As 
this paper shows, a suitable representation of the plant allows to concentrate the 
disturbances arising from the compression into a nonlinear periodic term acting in 
parallel to a static nonlinear feedback caused by friction. If standard linear parameter 
identification methods are used, the effect of this concentrated nonlinearity corresponds 
to a possibly infinite number of additional poles, which, however, depend on the 
rotational speed of the shaft. Using this property, it turns out possible to use a standard 
ARMAX identification approach to determine the model of the driveline. This is 
confirmed by measurements performed on an engine test bench.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Driveline control represents one of newest topics 
in automotive applications. Using such control 
permits a new trade off in driveline design 
between vehicle performance, minimizing fuel 
consumption and emissions and drivability.  
Various different controller designs like model 
reference control (Schwenger, Hinrichsen and 
Henn, 2004), predictive control (Baumann, et al., 
2004) and LQ control (Garofalo, et al., 2002), or 
even state estimation like Kalman filters 
(Schwenger, Hinrichsen and Henn, 2004) deal 
with the problems of driveline actuating. Hereby 
the given complex driveline is modelled using first 
principles as simple two mass oscillator which 
usually sufficiently reflects the first resonance 
frequency, and so the dominant poles of the real 
system. 

Other approaches (Fredriksson, Weiefors and Egardt, 
2002; Kiencke and Nielsen, 2000; Magnus and 
Nielsen, 2003) combine parameter estimation methods 
with parameters of inertias and shafts material known 
a priori. Also nonlinear effects, e.g. due to backlash 
(Lagerberg and Egardt, 2004), can be considered.  
In spite of their possible complexity, all these models 
are rather simple if compared to the possible 
complexity of a driveline. In particular linear models 
are a mostly sufficient approximation of the real 
system. Against this background it may prove sensible 
to use identification for the whole driveline without 
relying on a priori information. As linear 
identification of a nonlinear system boils down to 
optimal linear approximation, better or equivalent 
results than with the other approaches can be 
expected. Furthermore, online identification can be 
applied to track parameter changes due to wear or 



failure and so applicable for control and fault 
detection.  
A basic problem for the identification of driveline 
dynamics is the intermittent nature of gas 
exchange which shows in the form of torque peaks 
both in the fired and unfired engine condition and 
so in the corresponding movement irregularities.  
This paper shows a possible description of this 
effect in terms of a periodic feedback “extension” 
to the linear model to be identified. As a 
consequence, a new augmented nonlinear model 
arises, on which a standard linear identification 
approach (ARMAX) can be applied. An 
observation of the poles corresponding to the 
system extensions shows a variation with the shaft 
speed, so it is possible to distinguish them from 
the invariant poles of the target second order 
system.  
As mentioned in the abstract, the problem setup 
for a vehicle driveline or for its reproduction on a 
test bench is identical. In this work an AVL 
dynamical engine test bed has been used with a 
BMW M47d production engine, whereas correct 
load torque estimation is assumed.  
 

2. PROBLEM ANALYSIS 
 
The basic model-structure of a driveline consists 
of the tyre connected via flexible shafts and 
gearbox with the combustion engine where 
detailed modelling leads to a complicated high 
order system. 
But for standard-control, just the dominant 
(representative) system which contains the low 
frequencies is relevant. So, as far as a low order 
model (here second order is sufficient) is aimed at, 
the complex subsystems (for instance gearbox) are 
included in the damping and resistance and must 
be treated as linear lumped elements.  

y (t)2

u(t)

y (t)1

w(t)

J1 J2
cs

ds

 

Fig.  1. Mechanics 
  
Fig. 1 shows this linear two mass system with 
reduced inertias of tyre and drive shaft to inertia J1 
on the left side and the inertias of transmission, 
propeller shaft and engine reduced inertia J2 on 
the right side. Further u(t) represents the torque-
input of the road load, y1(t) the tyre speed, w(t) the 
torque-input of the engine, y2(t) the engine speed 
and cS, dS the spring-damper constants of the 
system. 
 
2.1 Design of the input torque u(t) 
 
In order to obtain the load torque u(t), the well 
known load equation (1) described by  (Kiencke 
and Nielsen, 2000) with mv the vehicle mass, vv the 
vehicle speed, g the gravity constant,  Faero the air 
resistance, Froll the rolling resistance and α the 
road grade, can be used. 

( ) ( )
( ( )) ( ( )) sin( ( ))

load

roll aero v

u t M t
F v t r F v t r m gr tα

=
= − − −

 (1) 

 
2.2 Design of the disturbance torque w(t) 
 
On the engine side, the engine torque w(t) will act 
over the inertial moment J2 and consist of a static 
frictional term wS(t) and a periodic term wP (t) for 
compression. 
 ( ) ( ) ( )S Pw t w t w t= +  (2) 
Both effects have to be regarded separately. The 
friction torque is a rotational speed depending force 
generically approximated by a polynomial of 2nd 
degree as in the following equation (3) for y2(t)>0. 
  (3) 2

2 0 1 2 2 2( ( )) ( ) ( )Sw y t b b y t b y t≈ + +
The effect of the engine temperature is not considered 
separately, because it varies too slowly to influence 
the identification process which lasts some seconds. In 
other words, the temperature effect is absorbed in 
parameter b0.  
The complex periodic function wp(t) could be 
approximated by an angular dependent combination of 
exponential and sinusoidal function with constant 
amplitude for unfired engine. 
In Fig. 2 the superposition (2) of both effects in w(t) is 
shown for constant speed. 
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Fig.  2. Engine torque w(t) 
 
Periodicity allows considering just sinusoidal 
disturbances, indeed just a single sine turns out to be 
sufficient. So to model this process we shall first 
derive an oscillator whose frequency is input 
dependent and inserted it in the linear of figure 1.  
Notice that alternatively mean value models as done 
e.g. in (Karlsson and Fredriksson, 1999), filtering the 
speed signal with a time domain or a crank angle 
based filter (Schmidt and J, 1999) which eliminate the 
combustion irregularities could be used. But problems 
caused by such approaches can occur because of 
nonlinear  signal-modification in time domain, which 
is problematic for identification using linear methods.  

 
Fig. 3 shows a simple oscillator with input dependent 
varying frequency in time domain. Hereby the input of 
this system is the engine speed y2(t). The same 
integrated gives the angular position, multiplied with 
the number of pressure pulses f per revolution gives 
the basis function v(t).  
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Fig.  3. Oscillator with input depending frequency 
 
V represents a constant gain which reflects the 
amplitude of periodic torque pulses.   
 
2.3 The linear model connecting engine and tyre 
 
The common state space representation of the 
linear model in Fig. 1 is given by (4). 

 
( ) x(t) ( )
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= +
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 (4) 

Hereby  x(t)T=[φ(t), y1(t), y2(t)] describes the state 
vector with the shaft-torsion φ(t), input U T =[u(t), 
w(t)] and output y(t) T =[ y1(t), y2(t)]. 
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A generic MIMO representation of discretized 
system (5) can be given by (6) . 
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Setting the engines input w(t) to zero, we obtain 
the transfer function from u(t) to y1(t) and using 
Laplace transforming gives the 2nd order approach 
(7) plus integrator. Here the polynomial A(s) 
(which we can also find in  
A(q-1)) shows us the representative information 
which we want to get out of identification. 
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Applying measurements taken with unfired 
engine, we could use the load torque u(t) as input 
and the load speed y1(t) as output and try to 
identify the corresponding transfer function (7) or 
its discrete time form. Unfortunately, this turns out 
to yield extremely poor results due to the pressure 
peaks due to the compression and static nonlinear 
feedback which do not fit in the classical 
identification noise framework, as they are highly 
correlated and periodic (see Fig. 2 for an 
example).  
In both cases as well as for their sum the system 
structure can be described in terms of the 
augmented nonlinear system shown in figure 4 
with w(t)=g( y2(t) ). 
The total system consists of a linear part with a 
nonlinear (dynamic) feedback w(t) correlated  to 
output y2(t). 
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Fig.  4. Augmented nonlinear system 
 
2.4 Driveline – test bench analogy 
 
As mentioned in the introduction, we can find the 
same structure of the simplified driveline in a test 
bench system. There, the engine is coupled via a 
flexible shaft with an electrical machine for load 
simulation. So, using the inertia of the electrical 
machine instead of the reduced inertias of tyre and 
drive shaft we obtain the same system at the test 
bench as in the driveline. Further the torque input u(t) 
at the test bench is the electrical torque instead of the 
road-load torque. It is clear that the parameters for 
inertias J1, J2, spring cs and damping coefficient ds are 
different, but the structure, which is crucial for 
identification, is still the same.  
Because of this analogy, the systems of driveline and 
test bench are discussed equivalent in the following 
sections. 
 

3. LINEAR SYSTEM REPRESENTATION 
 
3.1 Effect of nonlinear friction torque (static 

nonlinear feedback) 
 
The nonlinear friction torque is a speed y2(t) 
dependent function wS(t) which can be described as  
generically form of eq. (3) as static function in (8) 
 ( )1 2( ) ( ),Sw t g y t b=  (8)  

where b is a parameter-vector [b 0., b 1, b 2]. For 
sufficient small variations of y2(t), (8) can be 
approximated at a working point y20 and yields to 
equation (9). 
 2 0 1 2( ( )) ( ) ( )S Sw y t y t tβ β≈ + + ∆  (9) 
Hereby an error ∆S(t) caused by approximation is 
introduced into the system. Inserting into (6) 
the transfer function with approximated feedback at 
working point y

Sw w=

20  can be derived as (10). 
Equation (10) shows that the augmented system has a 
higher number of poles, of which: 

• Deg(A(q-1)) number of poles of the linear 
system at the original position A(q-1) and  

• Deg(A(q-1)-B22(q-1) β1) additional poles appear 
as an effect of the feedback, but their position 
will depend on β1 and thus on the operation 
point y20. 
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Notice also that the constant term B12(q-1)β0A(q-1) 
(offset) vanishes in the identification routine and  
B12(q-1)A(q-1)∆S(t) has the role of approximated 
disturbances which introduced to the system, so 
that an ARMAX assumption is a sensible choice. 

 
3.2 Effect of periodic disturbance 

 
The oscillator of Fig. 3 represents a speed y2(t) 
dependent function wP(t) can be described as  
generically form (11). 
 ( )1

2 2( ) ( ), ,Pw t g y t qδ −=  (11) 

A common approximation based on a finite sum is 
impossible, because the integrated input (mean 
value not zero) leaves the region of 
approximation. So it is easier to map the system in 
discrete domain (12).  
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Linearizing system (12) again at working point y20 
gives an oscillator with constant frequency f y20, 
sample time TS and amplitude V. The simplified 
form is shown in (13) with δ1=sin(f y20)Vf  y20TS 

and δ2=2cos(f y20). 
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Hereby an approximation error ∆P(t) is assumed to 
be correlated the dynamics of the oscillator. The 
input output representation of the linear system 
with periodic feedback is derived by substituting 

Pw w=  into (6) results in at a working point y20 
which yields to (14). 
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Here we can find the polynomial A(q-1) again, this 
time multiplied by denominator of the oscillator. 
The constant term q-1δ1 is expected to vanish in 
the ARMAX identification routine again. 
 
3.3 Combination of disturbances 
 
For receiving the full model, both disturbances 

 have to be combined and inserted 
into (6) and so one obtains (15) 

Sw w w= +
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with terms of F1 (16) related to the output.
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F2 in (17) related to the input, 
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F3 in (18) related to the offset, 

 ( )( )
1

3 20

1 1 1 2 1
12 0 2 1

( , )

( ) ( ) 1

F q y

A q B q q q qβ δ δ

−

− − − − −

=

− + +
 (18) 

and F4 in (19) related to the static feedback 
disturbance. 
 ( )1 1 1 1

4 20 12 2( , ) ( ) ( ) 1 2F q y A q B q q qδ− − − −= − −+

)

 (19) 

So for the ARMAX identification routine a model 
order of least deg(F1(q-1,y20)A(q-1)) has to be used. The 
constant term F3(q-1,y20) is expected to vanish in the 
identification process again.  
 

4. IDENTIFICATION 
 
One can now apply the ARMAX approach (Ljung, 
1999) for the identification of our problem. We recall 
that the ARMAX algorithms are designed for plants of 
the form 
 * 1 * 1 * 1

1( ) ( ) ( ) ( ) ( ) (A q y t B q u t C q e t− − −= +  (20) 
As we have seen, the problem can be put in form (15) 
where term C* comprises the term of uncertainty.  
While ARMAX has been conceived for filtered white 
noise, the iterative nature of the algorithm as well as 
recurring to the minimization of a robustified 
quadratic prediction error criterion using an iterative 
search algorithm, whose details are governed by the 
properties in (MATLAB), allows to achieve consistent 
and correct estimations (something witch would be 
impossible with ARX), albeit with the acceptable 
price of a high order of the polynomials A*, B* and 
C*. So a standard robust ARMAX approach as 
implemented in MATLAB yields an unbiased 
solution. 
There exist indeed methods for identification of 
(feedback) Hammerstein and Wiener systems as 
described in (Greblicki and Pawlak, 1986; Guo, 2003; 
Vandersteen and Schoukens, 1999; Vörös, 1999), but 
they are not necessary here, because we are not 
interested in the model of the nonlinearity but only in 
eliminating its effects. 
(Goodzeit and Phan, 2000) proposed a special ARX 
model based identification algorithm which can 
separate periodic disturbances. But in presence of 
friction feedback, such a method is not applicable, 
because one expects in such a case the nonlinear 
frictional torque feedback to cause biases in identified 
parameters.  
Due to the integrating characteristic of the plant, 
system identification has to be done in closed-loop. 
To excite the system in a broad frequency band, a 
discrete binary test signal (Isermann, 1991) has been 
used with a period of one and two seconds.  



The ARMAX identification will yield the right 
values of the poles (plus the additional poles).  
 
In contrast to the dependency on the working 
point, only the polynomial A(q-1) keeps constant. 
So, the gain of the identified system changes in the 
same way as the numerator. For obtaining the gain 
of the transfer function, two possibilities are for 
disposal: Inertias from manufacturer, or a drag and 
roll-out experiment developed by (AVL, 2004) 
can be used.  
 
To identify the periodically disturbed system, 
some constraints must be kept in mind: 

• The amplitude of the disturbance should 
not be dominant. In simulations it was 
possible to have disturbance amplitudes up 
to half of excitation. 

• The frequency of the disturbance 
(excitation) must not lie too near to the 
resonance frequencies of the system (what 
anyway would be a very poor choice in real 
applications). 
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Fig.  5. Frequencies of identified system  
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Fig.  6. Damping of identified system  
 
The identification measurements are done with 
two different excitation periods (one and two 
seconds) and in different controlled operation 
points.  

The Akaike final prediction error (MATLAB, 2002) 
for the measured system defined in (21) VFPE is the 
loss-function, dFPE the number of estimated 
parameters and NFPE is the number of estimation data 
was about 0.5 except one at 1.2.  
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The last two figures show frequency and damping of 
the poles in different operation points (engine speeds). 
Hereby a slightly nonlinear dependency on the 
operation point is obvious. But this behavior is 
confirmed by the manufacturer of the test-system. 
 

5. CONCLUSIONS 
 
In spite of its rather long derivation, the proposed 
method allows simple, fast and consistent estimation 
of driveline parameters. From the used point of view, 
the method essentially boils down to determine an 
overparametrized model for a few operating points, to 
sort out the “good” from the “spurious” poles. The 
proposed method guarantees robustness and 
convergence which cannot be shown by the known 
nonlinear identification methods up to now. Further 
this method is capable of being used as online 
application because the calculation effort much lower 
than those for nonlinear methods.  
As mentioned, this method was tested at on a 
dynamical test bench on which the drag force was 
simulated by the load of the electrical machine, and 
provided very good results.  
In Fig. 5 and 6 the operating point (speed y20 
dependent) frequency of the linear system is obvious 
too. It can be seen as quasi-linear. 

 

Experiments with fired engine did not give convergent 
identification, because the disturbance amplitude w(t) 
is much higher than load torque u(t).  
Further work is needed to make this approach 
applicable to production driveline systems, because it 
relies on a correct estimation of both load torque and 
speed, which are strongly affected by sensor 
precision.  
Another problem in driveline application is the 
complexity of system excitation. In principle, 
excitation can be provided both by brakes and engine, 
but still work is necessary to elaborate a driver and 
passenger friendly approach.  
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