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Abstract: In this paper an adaptive internal model based control scheme is designed to
deal with tracking and input disturbance suppression problems for a permanent magnet
synchronous motor. More in detail we show how to design a controller able to guarantee
the perfect asymptotic tracking of unknown exogenous trajectories belonging to a certain
family, embedding in the regulator the internal model of this family; the theoretical
machinery exploited in order to prove the global asymptotical stability of the solution
exposed is the nonlinear output regulation theory, specialized for the energy-based port-
Hamiltonian formalism.Copyright c©2005 IFAC.
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1. INTRODUCTION

In this paper we are interested in solving a tracking
problem for a permanent magnet synchronous mo-
tor: this is a simple but very significant issue as the
tracking of a particular velocity profile is probably the
main task to take into account dealing with permanent
magnet motors. Moreover the design procedure pre-
sented is proved to be able to deal with another im-
portant issue: a fault tolerant control design problem
taking into account the arise of spurious harmonics
in the electrical variables, superimposing to the con-
trol inputs. More in detail we show how to design
a controller able to guarantee the perfect asymptotic
tracking of unknown exogenous trajectories belonging
to a certain family and, at the same time, overcome
the possible presence of spurious harmonics superim-
posing to the voltage inputs; the theoretical machinery

1 This work was supported by MIUR and EC-Project IFATIS partly
funded by the European Commission in the IST programme 2001
of the 5th EC framework programme (IST-2001-32122).
2 Corresponding author.

exploited in order to prove the global asymptotical
stability of the solution exposed is the nonlinear out-
put regulation theory (the regulator will embed the
internal model of the possible trajectory/fault family)
specialized for the energy-based port-Hamiltonian for-
malism. This formalism is in fact really helpful to de-
scribe the problem, starting from an energetic descrip-
tion of the synchronous motor, and to find an elegant
solution (for synchronous permanent motor tracking
literature see (Shouse and Taylor, 1994a), (Shouse and
Taylor, 1994b), (Shouse and Taylor, 1998), (Zhuet
al., 2000), (Dawsonet al., 1976), (Ortegaet al., 2002)
and references therein).
In the next section the permanent magnet synchronous
motor model is presented and the tracking problem is
stated: a suitable change of coordinates will be intro-
duced in order to obtain an error system again fitting in
the port-Hamiltonian framework; it will be shown that
the tracking problem can be cast as a regulation and
input disturbance suppression problem for the error
system and, in Section 3, an internal model based
controller is designed in order to globally and asymp-



totically solve the problem. At the end of Section 3 a
remark will point out that the same design procedure
can be applied considering a fault tolerant control
design problem: hence the proposed scheme can be
considered as a comprehensive design framework for
tracking and fault tolerant control for a permanent
magnet synchronous motor. Section 4 concludes the
work with some final remarks.

2. PROBLEM STATEMENT AND PRELIMINARY
POSITIONS

Aim of this section is to introduce the model of a
permanent magnet synchronous motor and to state the
tracking problem that will be addressed in the rest of
the paper: the motor should follow a desired velocity
profile assuring, at the same time, zero flux current
in order to obtain a perfect decoupling between flux
and torque generation; obviously this task should be
asymptotically achieved despite of the presence of an
unknown constant load torque.
In the rest of the paper, the desired velocity profile
will be assumed to belong to the class of signals
generated by a linear, autonomous and neutrally stable
system, usually calledexosystem. In this set up, for
instance, any trajectory obtained by a combination
of constant and sinusoidal signals can be modelled.
This assumption will allow us to cast the problem of
trajectory tracking as a problem ofoutput regulation
as pointed out more specifically in the following.
Let now introduce the system model: a permanent
magnet synchronous motor (in a rotating reference,
i.e. the dq frame) can be written as a port-Hamiltonian
system with dissipation (see (van der Schaft, 1999),
(Ortegaet al., 2002)) for the state vector

x = M




id
iq
ω


 with M =




Ld 0 0
0 Lq 0

0 0
j

np




whereid andiq are the stator currents,ω the angular
velocity, Ld, Lq the stator inductances,j the inertia
momentum andnp the number of pole pairs. The
Hamiltonian function is defined by

H(x) =
1
2
xTM−1x

while J(x), R andg are determined as

J(x) =




0 L0x3 0
−L0x3 0 −Φq0

0 Φq0 0


 ,

R =




Rs 0 0
0 Rs 0
0 0 0


 , g =




1 0 0
0 1 0

0 0 − 1
np




with Rs the stator winding resistance,Φq0 a constant
term due to interaction of the permanent magnet and
the magnetic material in the stator, andL0 = Ldnp/j.
The stator voltagesvd andvq are the available control

inputs while the constant load torqueτl is an unknown
input. Hence the permanent magnet motor can be
modelled as a port-Hamiltonian system of the form

ẋ = [J(x)−R]
∂H(x)

∂x
+ g

[
vd vq τl

]T
. (1)

As already announced, the control objective is to make
the motor follow an unknown, exogenous, desired
velocity trajectoryxdes

3 = j/np ωdes with, at the
same time, zero flux current in order to obtain a perfect
decoupling between flux and torque generation (i.e.
ides
d = Ldx

des
1 = 0).

Obviously this task should be asymptotically achieved
despite of the presence of an unknown constant load
torqueτl.
Let us assume that the desired trajectory profileh(w)
is generated by the linear, neutrally stable autonomous
system (exosystem)

ẇ = Sw

xdes =




xdes
1

xdes
2

xdes
3


 = h(w) =




h1(w)
h2(w)
h3(w)


 (2)

wherew ∈ IRs andS is defined by

S = diag{S0, S1, . . . , Sα} , s = 2α + 1

with S0 = 0,

Si =
[

0 ωi

−ωi 0

]
ωi > 0 i = 1, . . . , α

andw(0) ∈ W, withW ⊆ IRs bounded compact set.
In this discussion the dimensions of matrixS will be
considered known but all characteristic frequenciesωi

are unknown but ranging within known compact sets,
i.e.ωmin

i ≤ ωi ≤ ωmax
i .

In this set up, the lack of knowledge of desired veloc-
ity profile reflects into the lack of knowledge of the
initial statew(0) of the exosystem and of the charac-
teristic frequencies. Moreover the profileh(w) will be
assumed to be polynomial inw: hence the class of sig-
nal considered is no more restricted to a simple purely
linear case, but will take into account a polynomial
combination of constant and sinusoidal signals with
unknown frequencies, amplitudes and phases.
All those assumptions allow us to cast the track-
ing problem as a problem ofoutput regulation, (see
(Byrneset al., 1997b), (Gentili and van der Schaft,
2003)) complicated by the lack of knowledge of the
matrix S (see (Serraniet al., 2001), (Boniventoet
al., 2004b)), and suggests to look for a controller
which embeds aninternal modelof the exogenous
signals, augmented by an adaptive part in order to
estimate the characteristic frequencies.
In order to show how the port-Hamiltonian formalism
could be really helpful to describe the problem and to
find an elegant solution, it is now possible to define a
change of coordinates and introduce a new error sys-
tem again fitting in the port-Hamiltonian framework:
we will point out that the tracking problem is now cast
as a regulation problem complicated by the presence



of exogenous “virtual” disturbance signals. In the next
section this error system will be stabilized asymptoti-
cally (achieving a perfect asymptotical tracking) with
the design of a canonical adaptive internal model unit.

Remark. It is worth to remark that the error change
of coordinates will be suitably defined in order to
obtain a damping term in the velocity dynamic: this
will be really fundamental in the following, when
the asymptotic behaviour of the error system will be
studied./

Let us define

x̃1 = x1 − xdes
1

x̃2 = x2 − xdes
2 − k3x̃3

x̃3 = x3 − xdes
3

(3)

wherek3 is a suitably defined gain. Deriving the new
coordinates (calling the statẽx = (x̃1, x̃2, x̃3)T and
the input control vectorv = [vd vq]T) we obtain a
new error port-Hamiltonian system of the form:

˙̃x = [J(x̃)− R̃]
∂H̃

∂x̃
+ g̃(v− λ̃(x̃)− ϕ̃(x̃)ψ(w)) (4)

where the new Hamiltonian is defined by:

H̃(x̃) =
1
2
x̃TM−1x̃ ,

the input matrix̃g and the damping matrix̃R are

g̃ =




1 0
0 1
0 0


 , R̃ =




Rs 0 0
0 Rs 0

0 0 −Φq0j

Lqnp
k3




and

λ̃(x̃) + ϕ̃(x̃)ψ(w) =
[
λ̃1(x̃) + ϕ̃1(x̃)ψ1(w)
λ̃2(x̃) + ϕ̃2(x̃)ψ2(w)

]
(5)

with

λ̃1(x̃) = −L0

Lq
k3x̃

2
3

ϕ̃1(x̃)ψ1(w) = − L0

Φq0
x̃3

(
ḣ3(w) +

τl

np

)
+

− L0

Lq
k3x̃3h3(w)− L0

Lq
x̃2h3(w)+

− L0

Φq0
h3(w)

(
ḣ3(w) +

τl

np

)

λ̃2(x̃) =
Rs

Lq
k3x̃3 +

Φq0

Lq
k3x̃2 +

Φq0

Lq
k2
3x̃3

ϕ̃2(x̃)ψ2(w) =
L0

Ld
x̃1h3(w) +

Φq0

j/np
h3(w)+

+
Rs

Φq0

(
ḣ3(w) +

τl

np

)
+

Lq

Φq0
ḧ3(w) .

(6)
It is now immediate to consider the original track-
ing problem as a stabilization problem with “vir-
tual” input disturbance suppression for the error port-
Hamiltonian system (4).
As the velocity trajectory to be trackedh3(w) is poly-
nomial inw, from (5) and (6) it is straightforward to

state that also the disturbance termsψ1(w) andψ2(w)
are polynomial inw and it is possible to solve the
problem following (Astolfi et al., 2003) or (Gentili
and van der Schaft, 2003), designing a suitable port-
Hamiltonian internal model unit.
Let us impose a preliminary control action in order to
compensate for the known “virtual” disturbance term
λ(x̃):

v′ =
[
λ̃1(x̃) + v′d
λ̃2(x̃) + v′q

]
.

It is worth to point out that the controller to be de-
signed will use for feedback the whole error statex̃.

3. INTERNAL MODEL UNIT DESIGN

In this section we are going to design a suitable in-
ternal model unit based controller able to globally,
asymptotically regulate to the origin the state of (4)
despite of the presence of the “virtual” input distur-
bance (5), (6); this controller represents, obviously, a
solution to the original tracking problem.
In order to design the internal model unit as a port-
Hamiltonian system, it is worth to recall that main
proposition in (Huang, 2001) assures that, asψ(w) is
polynomial inw, then there exists some set ofr real
numbersa0, a1, . . . , ar−1 such that

Lr
Swψ(w) = a0ψ(w) + a1LSwψ(w) + · · ·

· · ·+ ar−1L
r−1
Sw ψ(w)

(7)

Moreover, still in (Huang, 2001), it is assured the
existence ofω̂0 = 0 and ω̂1, . . . , ω̂nk

∈ Ω where
r = 2nk + 1 and Ω = {l1ω̂1 + · · · + lkω̂k ≥
0 , l1, . . . , lk = 0,±1,±2, . . .}, such that

λ

nk∏

l=1

(λ2+ω̂2
l ) = λr−a0−a1λ−· · ·−ar−1λ

r−1 (8)

From (8) we immediately found out thatai = 0 for i
even.
Condition (7) implies that the autonomous system

{
ẇ = Sw
u = ψ(w)

is immersed by a map̄ρ(w) into the linear observable
system (see (Byrneset al., 1997a), (Isidori, 1995))
defined by {

˙̄w = Θw̄
u = Υw̄

(9)

where matricesΘ and Υ are defined asΘ =
diag{Θ̃, Θ̃}, Υ = diag{Υ̃, Υ̃} with

Θ̃ =




0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
.. .

...
...

0 0 0 0 · · · 0 1
0 a1 0 a3 · · · ar−2 0




Υ̃ =
[
1 0 0 · · · 0

]
.



It is easy to realize that system (9) is equivalent,
and therefore immersed, by means of a simple linear
transformation, to the linear system

{
ż = Φz
u = Λz

(10)

where matricesΦ andΛ are defined asΛ = diag{Λ̃, Λ̃}
andΦ = diag{Φ̃, Φ̃} with Λ̃ =

[
1 0 1 0 · · · 1 0

]
and

Φ̃ = diag{Φ0, Φ1, . . . , Φk}
with Φ0 = 0 and

Φi =
[

0 ω̂i

−ω̂i 0

]
ω̂i > 0 i = 1, . . . , nk .

The linear transformation is defined byz = Tξ with

T−1 =
[
ΛT ΦTΛT · · · ΦTr−1

ΛT
]

.

In the end we can write again the system to regulate
(4) with the “virtual” input disturbance (5), (6) as

˙̃x = [J(x̃)− R̃]
∂H̃

∂x̃
+ g̃(v′ − ϕ̃(x̃)Λz) . (11)

The exosystem is now defined by (10): the dimension
of the characteristic matrixΦ (i.e.β = 2r = 2(2nk +
1)) is still assumed to be known, but again, all char-
acteristic frequencieŝωi will be unknown but ranging
within known compact sets, i.e.̂ωmin

i ≤ ω̂i ≤ ω̂max
i .

The regulator to be designed will embed the inter-
nal model of the exogenous disturbance: this internal
model unit is designed according to the procedure pro-
posed in (Nikiforov, 1998) (canonical internal model);
obviously, as the exosystem matrixΦ is not known,
the “classical” approach will be augmented with an
adaptive mechanism in order to obtain an estimate
of this matrix (i.e. an estimate of the characteristic
frequencies).
Given any Hurwitz matrixF and any matrixG such
that (F, G) is controllable, denote byY the unique
matrix solution of the Sylvester equation

Y Φ− FY = GΓ

whereΓ = ϕ̃(x̃)Λ and defineΨ := ΓY −1.
As Φ is not know, it is impossible to calculate the
solution of the Sylvester equationY and henceΓ:
hence an estimation mechanism is needed. To this aim,
let introduce an adaptive internal model unit as

{
ξ̇ = (F + GΨ̂)ξ + N(x̃)

˙̂Ψij = ψij(ξ, x̃) i = (1, 2) , j = (1, · · · , β)
(12)

whereΨ̂ij represents the(ij)-th element of matrix̂Ψ
and set the control law as

v′ = Ψ̂ξ + vst (13)

whereN(x̃) and ust are additional terms to be de-
signed later. The adaptation lawψ(ξ, x̃) will be de-
signed in order to assure that, asymptotically, the in-
ternal model unit will provide a control action able to

overcome all “virtual” disturbances.
Defining the changes of coordinate

χ = ξ − Y z −Ax̃

Ψ̃ij = Ψ̂ij −Ψij i = (1, 2) , j = (1, · · · , β)

where matrixA is such thatAg̃ = G, system (11) with
controller (12) becomes



˙̃x = [J(x̃)− R̃]
∂H̃

∂x̃
+ g̃Ψ̃ξ + g̃Ψξ + g̃vst − g̃Γz

χ̇ = (F + GΨ̂)ξ + N(x̃)− Y Φz −A ˙̃x

˙̂Ψij = ψij(ξ, x̃) i = (1, 2) , j = (1, · · · , β) .
(14)

Note that

˙̃x = [J(x̃)− R̃]
∂H̃

∂x̃
+ g̃Ψ̃ξ + g̃Ψ(ξ − Y z −Ax̃)+

+g̃ΨAx̃ + g̃vst =

= [J(x̃)− R̃]
∂H̃

∂x̃
+ g̃Ψ̃ξ + g̃Ψχ + g̃Ψ̂Ax̃+

−g̃Ψ̃Ax̃ + g̃vst .

Choosingvst = −Ψ̂Ax̃−Kg̃Tx̃ with the gain matrix
K defined as

K =
[
k1 0
0 k2

]
,

it is possible to write

˙̃x = [J(x̃)− R̃− g̃Kg̃T]
∂H̃

∂x̃
+ g̃Ψ̃(ξ −Ax̃) + g̃Ψχ .

Defining now a vector∆ containing every element of
matrixΨ (and defining suitablŷ∆ and∆̃) as

∆ =
[
Ψ11 · · · Ψ1β Ψ21 · · · Ψ2β

]T
, (15)

it is possible to define a suitable matrixΠ(x̃, ξ) such
that

Π(x̃, ξ)∆̃ = g̃Ψ̃(ξ −Ax̃),
and to write

˙̃x = [J(x̃)−R̃−g̃Kg̃T]
∂H̃

∂x̃
+Π(x̃, ξ)∆̃+g̃Ψχ . (16)

Concentrate now on theχ-dynamic in order to design
suitably the update termN(x̃):

χ̇ = (F + GΨ̂)ξ + N(x̃)− FY z −GΓz+

− A
{

[J(x̃)− R̃]
∂H̃

∂x̃
+ g̃Ψ̂ξ − g̃Ψ̂Ax̃+

− g̃Kg̃Tx̃− g̃Γz
}

=

= Fχ + FAx̃ + N(x̃)−A[J(x̃)− R̃]
∂H̃

∂x̃
+

+ Ag̃Ψ̂Ax̃ + Ag̃Kg̃Tx̃.

Choosing

N(x̃) = −FAx̃ + A[J(x̃)− R̃]
∂H̃

∂x̃
−Ag̃Ψ̂Ax̃+

− Ag̃Kg̃Tx̃

we obtain
χ̇ = Fχ . (17)



As all dynamics of (14) have been investigated, it
is now possible to design an adaptation law forΨ̂T:
assume then updating functionsϕij(x, ξ) such that

˙̂∆ = −Π(x̃, ξ)T
∂H̃

∂x̃
.

With this in mind it is immediate to write thẽ∆-
dynamic as

˙̃∆ = ˙̂∆− ∆̇ = −Π(x̃, ξ)T
∂H̃

∂x̃
. (18)

Consider now equations (16) with (17) and (18). This
new system identifies an interconnection described by:

˙̄x = [J̄(x̄)− R̄]
∂Hx(x̄)

∂x̄
+ Λ(χ)

with
x̄ =

[
x̃ χ ∆̃

]T
,

the HamiltonianHx(x̄) defined by

Hx(x̄) = H̃(x̃) +
1
2
χTχ +

1
2
∆̃T∆̃ ,

the skew-symmetric interconnection matrix̄J(x̄) de-
fined by:

J̄(x̄) =




J(x̃) 0 Π(x̃, ξ)
0 0 0

−Π(x̃, ξ)T 0 0


 ,

the positive-definite damping matrix̄R defined as:

R̄ =




R̃ + g̃Kg̃T 0 0
0 −F 0
0 0 0


 ,

andΛ(χ) defined by:

Λ =
[
g̃Ψχ 0 0 0

]T
.

It is now possible to state the following proposition
assuring the solution of the tracking problem consid-
ered.

Proposition 1.Consider a permanent magnet syn-
chronous motor described by equation (1) and an ex-
ogenous trajectory profile to be tracked defined by (2).
Defining the state tracking error̃x = x − xdes, the
error state feedback control law generated by the in-
ternal model unit:



ξ̇ = (F + GΨ̂)ξ − FAx̃ + A[J(x̃)− R̃]
∂H̃

∂x̃
+

− Ag̃Ψ̂Ax̃−Ag̃Kg̃Tx̃

˙̂∆ = −Π(x̃, ξ)T
∂H̃

∂x̃

v = λ̃(x̃) + Ψ̂ξ − Ψ̂Ax̃−Kg̃Tx̃

with ∆ defined in (15), matrixA such thatAg̃ = G,
F an Hurwitz gain matrix andG such that(F, G) is
controllable, assures, provided thatk3 and the gain
matricesF andK are suitably defined according to
the constructive proof, that the tracking problem is
globally, asymptotically solved, i.e.

lim
t→∞

x = xdes

Proof. ConsideringHx(x̄) as a Lyapunov function,
the proof (remembering thatF is an arbitrary Hurwitz
matrix andK and arbitrary gain matrix) is immediate
considering the time derivative of this Lyapunov func-
tion:

Ḣx = −∂THx

∂x̄
R̄

∂Hx

∂x̄
+

∂TH̃

∂x̃
g̃Ψχ =

= − 1
Ld

(Rs + k1)x̃2
1 −

1
Lq

(Rs + k2)x̃2
2+

+
Φq0j

Lqnp
k3x̃

2
3 +

[
x̃1

Ld

x̃2

Lq

]
Ψχ + χTFχ .

Choosing the gaink3 such that
Φq0j

Lqnp
k3 < 0, as there

exist two constantsηΨ1 ∈ IR andηΨ2 ∈ IR such that[
x̃1

Ld

x̃2

Lq

]
Ψχ ≤ ηΨ1‖x̃1‖‖χ‖+ ηΨ2‖x̃2‖‖χ‖ ,

it is possible to use Young’s inequality3 designing
properlyF andK and assuring that there existηx̃1 ∈
IR+, ηx̃2 ∈ IR+, ηx̃3 ∈ IR+ andηχ ∈ IR+ such that

Ḣx ≤ −ηx̃1‖x̃1‖2 − ηx̃2‖x̃2‖2+
−ηx̃3‖x̃3‖2 − ηχ‖χ‖2 ≤ 0 .

(19)

Hence for LaSalle invariance principle, system’s tra-
jectory are asymptotically captured by the largest in-
variant set characterized bẏHx = 0; then by (19) the
system will asymptotically converge to

lim
t→∞

(x̃1, x̃2, x̃3, χ) = (0, 0, 0, 0) .

In other words the tracking problem is solved and the
proposition proved./

Remark. Electrical motors can be subject to some
asymmetries (e.g. due to some electrical or mechan-
ical faults) that comport the arise of spurious harmon-
ics in the electrical variables. It is possible to model
these effects as sinusoidal signalsζ(t) superimposed
to the controlled input. For this reason equation (4)
can be rewritten as

˙̃x = [J(x̃)− R̃]
∂H̃

∂x̃
+ g̃(v − λ̃(x̃)− ϕ̃(x̃)ψ(w) + ζ)

where
ż = Ξz
ζ = κ(z) ,

κ is a polynomial map,z ∈ IRq, Ξ is defined by

Ξ = diag{Ξ0, Ξ1, . . . , Ξβ} , q = 2δ + 1

with Ξ0 = 0,

Ξi =
[

0 $i

−$i 0

]
$i > 0 i = 1, . . . , δ

andz(0) ∈ Z, with Z ⊆ IRq bounded compact set;
again, the class of possible fault effects considered,
take into account a polynomial combination of con-
stant and sinusoidal signals with unknown frequen-
cies, amplitudes and phases.

3 Note that, even ifΨ depends on the statẽx, the procedure is not
inficiate since the relation is linear.



With slightly simple modification an input disturbance
suppression problem has been cast in the problem
solved in Section 3 (actually the original tracking
problem has been cast into a regulation and input dis-
turbance problem by the error change of coordinates
(3)). Hence, following the same solution procedure, a
controller of the form presented in (12) can be found
in order to satisfy the tracking objective even in case
of disturbances, acting on the input of our system,
belonging to the fault family described above.
It is important to stress that, since Proposition 1 still
holds, the same solution scheme explained in Section
3 can be used to design a controller which embeds an
internal modelof this fault family in order to generate
a control action which compensate for the presence
of any of such faults, regardless their entity, achieving
also the perfect tracking. The proposed scheme can
be said to be an implicit fault tolerant control as dis-
cussed in (Boniventoet al., 2004a) or (Boniventoet
al., 2004b).
Hence the proposed scheme can be considered as
a comprehensive design framework for tracking and
fault tolerant control for a permanent magnet syn-
chronous motor./

4. CONCLUSIONS

In this paper an adaptive internal model based con-
trol scheme is presented to deal with tracking and
input disturbance suppression problems for a perma-
nent magnet synchronous motor. More in detail in
Section 2 the port-Hamiltonian model of the motor is
presented, the problem is stated and a suitable change
of coordinates is introduced to define an error system:
this makes it possible to cast the tracking problem
into a regulation and input disturbance suppression
problem.
In Section 3 a controller able to guarantee the perfect
asymptotic tracking of unknown exogenous trajecto-
ries belonging to a certain family, embedding the in-
ternal model of this family, is presented; the theoret-
ical machinery exploited in order to prove the global
asymptotical stability of the solution exposed is the
nonlinear output regulation theory, specialized for the
energy-based port-Hamiltonian formalism.
The same design procedure can be applied considering
a fault tolerant control design problem, taking into ac-
count the arise of spurious harmonics in the electrical
variables, superimposing to the control inputs.
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