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Abstract: In this paper an adaptive internal model based control scheme is designed to
deal with tracking and input disturbance suppression problems for a permanent magnet
synchronous motor. More in detail we show how to design a controller able to guarantee
the perfect asymptotic tracking of unknown exogenous trajectories belonging to a certain
family, embedding in the regulator the internal model of this family; the theoretical
machinery exploited in order to prove the global asymptotical stability of the solution
exposed is the nonlinear output regulation theory, specialized for the energy-based port-
Hamiltonian formalismCopyright(©2005 IFAC
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1. INTRODUCTION exploited in order to prove the global asymptotical
stability of the solution exposed is the nonlinear out-

In this paper we are interested in solving a tracking put regulation theory (the regulator will embed the
problem for a permanent magnet synchronous mo-internal model of the possible trajectory/fault family)
tor: this is a simple but very significant issue as the specialized for the energy-based port-Hamiltonian for-
tracking of a particular velocity profile is probably the malism. This formalism is in fact really helpful to de-
main task to take into account dealing with permanent scribe the problem, starting from an energetic descrip-
magnet motors. Moreover the design procedure pre-tion of the synchronous motor, and to find an elegant
sented is proved to be able to deal with another im- solution (for synchronous permanent motor tracking
portant issue: a fault tolerant control design problem Jiterature see (Shouse and Taylor, 1894Shouse and
taking into account the arise of spurious harmonics Taylor, 1994), (Shouse and Taylor, 1998), (Zlet
in the electrical variables, superimposing to the con- al., 2000), (Dawsort al., 1976), (Ortegat al., 2002)
trol inputs. More in detail we show how to design and references therein).
a controller able to guarantee the perfect asymptoticin the next section the permanent magnet synchronous
tracking of unknown exogenous trajectories belonging motor model is presented and the tracking problem is
to a certain family and, at the same time, overcome stated: a suitable change of coordinates will be intro-
the possible presence of spurious harmonics superim-duced in order to obtain an error system again fitting in
posing to the voltage inputs; the theoretical machinery the port-Hamiltonian framework; it will be shown that
the tracking problem can be cast as a regulation and

1 This work was supported by MIUR and EC-Project IFATIS partly Input dISturba_nce suppressnon problem for the error
funded by the European Commission in the IST programme 2001 system and, in Section 3, an internal model based

of the 5th EC framework programme (IST-2001-32122). controller is designed in order to globally and asymp-
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totically solve the problem. At the end of Section 3 a
remark will point out that the same design procedure
can be applied considering a fault tolerant control
design problem: hence the proposed scheme can b

considered as a comprehensive design framework for

tracking and fault tolerant control for a permanent

inputs while the constant load torqueis an unknown
input. Hence the permanent magnet motor can be
modelled as a port-Hamiltonian system of the form

€ OH (z)

i = [J(2) — B =

)

magnet synchronous motor. Section 4 concludes thePs already announced, the control objective is to make

work with some final remarks.

2. PROBLEM STATEMENT AND PRELIMINARY
POSITIONS

Aim of this section is to introduce the model of a

the motor follow an unknown, exogenous, desired
velocity trajectoryzi® = j/n, wie with, at the
same time, zero flux currentin order to obtain a perfect
decoupling between flux and torque generation (i.e.
ides = Lyzdes = ).

Obviously this task should be asymptotically achieved
despite of the presence of an unknown constant load

permanent magnet synchronous motor and to state thd0rquer:.

tracking problem that will be addressed in the rest of
the paper: the motor should follow a desired velocity
profile assuring, at the same time, zero flux current
in order to obtain a perfect decoupling between flux
and torque generation; obviously this task should be

asymptotically achieved despite of the presence of an

unknown constant load torque.
In the rest of the paper, the desired velocity profile
will be assumed to belong to the class of signals

generated by a linear, autonomous and neutrally stable

system, usually calleéxosystemin this set up, for
instance, any trajectory obtained by a combination

of constant and sinusoidal signals can be modelled.

This assumption will allow us to cast the problem of

trajectory tracking as a problem ofitput regulation

as pointed out more specifically in the following.

Let now introduce the system model: a permanent
magnet synchronous motor (in a rotating reference,
i.e. the dg frame) can be written as a port-Hamiltonian
system with dissipation (see (van der Schaft, 1999),
(Ortegaet al,, 2002)) for the state vector

y La 0 0
c=M|i,| with =" L (]).
w 0 0 —

n

whereiy andi, are the stator currents, the angular
velocity, Lq, L, the stator inductanceg, the inertia
momentum andr, the number of pole pairs. The
Hamiltonian function is defined by

1
H(z) = ixTMflx

while J(z), R andg are determined as
0 LQ(E3 0
J(:Z?) = —Lol‘g 0 —‘bqo y
| 0 D4 O
w0
R=1]0 R;0|,¢g= 1
0 00 00 ——
L ny

with R, the stator winding resistance,, a constant

Let us assume that the desired trajectory prdiile)
is generated by the linear, neutrally stable autonomous
system €xosystein

w = Sw
2™ ] (@)
x%% = | zdes | = h(w) = |ha(w)
Iges h?’(w)
wherew € R® andS is defined by
S:diag{S(),Sl,...,Sa}, s=2a+1
with Sy = 0,
Si:|:0 wi:| w; >0 1=1,...,«
—W; 0

andw(0) € W, with W C R*® bounded compact set.

In this discussion the dimensiarof matrix .S will be
considered known but all characteristic frequencigs
are unknown but ranging within known compact sets,
i.e.w;mi“ <w; < wiex,

In this set up, the lack of knowledge of desired veloc-
ity profile reflects into the lack of knowledge of the
initial statew(0) of the exosystem and of the charac-
teristic frequencies. Moreover the profiléw) will be
assumed to be polynomial in: hence the class of sig-
nal considered is no more restricted to a simple purely
linear case, but will take into account a polynomial
combination of constant and sinusoidal signals with
unknown frequencies, amplitudes and phases.

All those assumptions allow us to cast the track-
ing problem as a problem afutput regulation (see
(Byrneset al, 199h), (Gentili and van der Schaft,
2003)) complicated by the lack of knowledge of the
matrix S (see (Serranket al, 2001), (Boniventoet

al., 2004)), and suggests to look for a controller
which embeds arinternal modelof the exogenous
signals, augmented by an adaptive part in order to
estimate the characteristic frequencies.

In order to show how the port-Hamiltonian formalism
could be really helpful to describe the problem and to
find an elegant solution, it is now possible to define a
change of coordinates and introduce a new error sys-

term due to interaction of the permanent magnet andtem again fitting in the port-Hamiltonian framework:

the magnetic material in the stator, abgl= Lgn,/j.
The stator voltages; andv, are the available control

we will point out that the tracking problem is now cast
as a regulation problem complicated by the presence



of exogenous “virtual” disturbance signals. In the next
section this error system will be stabilized asymptoti-
cally (achieving a perfect asymptotical tracking) with

the design of a canonical adaptive internal model unit.

Remark. It is worth to remark that the error change
of coordinates will be suitably defined in order to
obtain a damping term in the velocity dynamic: this
will be really fundamental in the following, when
the asymptotic behaviour of the error system will be
studied <

Let us define

des

,’il = T1 — T

~ . des ~

Ty = T — Ty  — ]Cg.’L'g (3)
1~73 = I3 — xges

wherek;s is a suitably defined gain. Deriving the new
coordinates (calling the stafe = (1,42, 23)" and
the input control vecton = [vg v,]T) we obtain a
new error port-Hamiltonian system of the form:

- OH
R

= 9V =A@) =~ ¢(@)(w)) (4)

where the new Hamiltonian is defined by:

z=[J(7)~

. 1
H(z) = §~TM*1¢,

the input matrixj and the damping matrig are

R, O 0
10 s
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Lqny
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(hg(w) +

ha(w)+
Lq
+ R
Dy

hs(w) .
(6)

It is now immediate to consider the original track-
ing problem as a stabilization problem with “vir-
tual” input disturbance suppression for the error port-
Hamiltonian system (4).

As the velocity trajectory to be trackeéd (w) is poly-
nomial inw, from (5) and (6) it is straightforward to

state that also the disturbance term$w) andys (w)

are polynomial inw and it is possible to solve the
problem following (Astolfiet al, 2003) or (Gentili
and van der Schaft, 2003), designing a suitable port-
Hamiltonian internal model unit.

Let us impose a preliminary control action in order to
compensate for the known “virtual” disturbance term
A(Z):

/ 5‘1(5) + vy

Vo= |5, 7o
A2(Z) + vy

It is worth to point out that the controller to be de-

signed will use for feedback the whole error state

3. INTERNAL MODEL UNIT DESIGN

In this section we are going to design a suitable in-
ternal model unit based controller able to globally,
asymptotically regulate to the origin the state of (4)
despite of the presence of the “virtual” input distur-
bance (5), (6); this controller represents, obviously, a
solution to the original tracking problem.

In order to design the internal model unit as a port-
Hamiltonian system, it is worth to recall that main
proposition in (Huang, 2001) assures thatyds) is
polynomial inw, then there exists some setsofeal
numbersug, ay, ..., a,_1 such that

gww(w) = a/O'(/)(UJ) + alLSw’(/}(w) + ...

2
...+ar,1Lg{Ulw(w) (")

Moreover, still in (Huang, 2001), it is assured the
existence ofog 0 andwq,...,w,, € Q where

r = 2n, +1andQ = {ll(f)l + o+ Lk >
0,0,...,lx =0,£1,+£2, ...}, such that

Nk

AP +@7) = A" —ag—ar A=+ -—a, 1 A" (8)
=1

From (8) we immediately found out that = 0 for 4

even.

Condition (7) implies that the autonomous system
w = Sw

{UZ P(w)

is immersed by a map(w) into the linear observable
system (see (Byrnest al, 1997), (Isidori, 1995))
defined by

w = Ow
Yw

u
wherq rpatrices@ ang T are defined as®
diag{©, 0}, T = diag{ Y, T} with

©)

0100 0 0
0010--- 0 O
O=|:: 1 . 1 | T=[100-0].
0000 - --- 0 1
Oay 0asg --- a,—2 0



It is easy to realize that system (9) is equivalent, overcome all “virtual” disturbances.
and therefore immersed, by means of a simple linearDefining the changes of coordinate

transformation, to the linear system

{i2

where matrice® andA are defined ag = diag{A, A}
and® = diag{®,®} with A = [1010--- 1 0]
and

(OF

Az (10)

® = diag{®g, D, ..., Py}
with ®; = 0 and
0 & . o
@i—[_d)i O] w; >0 1=1,...,nk.

The linear transformation is defined by= T'¢ with

71— {AT PTAT (bTT—lAT} '

In the end we can write again the system to regulate

(4) with the “virtual” input disturbance (5), (6) as

i = @) - B

+g(v' —@(@)A2).  (11)

x =&-Yz— Az
Ui =Wy -0 i=(1,2), j=(1,---,8)

where matrixA4 is such thatdg = G, system (11) with
controller (12) becomes

. = 0H . _ N
T = [J(Z) - R] a5 TIVEF GUEF Gua — gLz

X = (F4+GU)¢+ N(i) - Ydz — Ak

Uy = vy(68)  i=(1,2), j=(1,-,8).
(14)
Note that
- . _OH - B ~
T =1[J(&)— R]% +gUE+ gV (E—Yz— Az)+
+gUAT + gugs =
. - 0H . .
= [J(Z) — R| oF +gUE+ gUy + gP AT+
—GUAT + Gug .

Choosingu,, = —U A7 — K §* 7 with the gain matrix

The exosystem is now defined by (10): the dimension K defined as

of the characteristic matri® (i.e. 5 = 2r = 2(2ny, +

1)) is still assumed to be known, but again, all char-

acteristic frequencies; will be unknown but ranging
within known compact sets, i.e,™'" < @; < o,

The regulator to be designed will embed the inter- i — [7(z) — R — §K§"]
nal model of the exogenous disturbance: this internal

[k 0
w=[in)
it is possible to write
OH -
gU (& —AZ)+g¥x.
57 TIV(E—AT) +g¥x

model unit is designed according to the procedure pro-Defining now a vectoA containing every element of

posed in (Nikiforov, 1998)qanonical internal modéi
obviously, as the exosystem matidxis not known,

the “classical” approach will be augmented with an

matrix ¥ (and defining suitabA andA) as

A= [‘1’11 ‘1’1,6 Woy -+ ‘1’2,8}T ’ (15)

adaptive mechanism in order to obtain an estimateit is possible to define a suitable matiikz, {) such
of this matrix (i.e. an estimate of the characteristic that

frequencies).

Given any Hurwitz matrixF' and any matrixG such
that (F', G) is controllable, denote by” the unique
matrix solution of the Sylvester equation

YO - FY =GT

wherel’ = 5(z)A and definel :=TY 1.
As ® is not know, it is impossible to calculate the
solution of the Sylvester equatiori and hencel™:

hence an estimation mechanism is needed. To this aim,

let introduce an adaptive internal model unit as

(= (F+GU)E+ N(&)
U, = y(6,8) i=(1,2),5=~1,---,8)
) (12)
whereV,; represents théij)-th element of matrixy

and set the control law as
v =W + vy (13)

where N(z) and ug; are additional terms to be de-
signed later. The adaptation layw(¢, z) will be de-

(%, 6)A = g¥(¢ — Az),
and to write

+11(Z, £) A+gTx . (16)

. - 0OH
- A _~K~T

&= [J(@)-R-GK§" 5
Concentrate now on the-dynamic in order to design
suitably the update terV (z):

X = (F+GU)f+ N(Z)— FYz — GTz+

- A{[J(;;) - R]%—j +gbe — gl AT+

signed in order to assure that, asymptotically, the in- we obtain

ternal model unit will provide a control action able to

— GK§ % — grz} -
. OH
= Fx+ FAZ + N(i) — A[J(Z) — R] %j +
+ AGUAZ + AGK G i
Choosing
N N = O0H .
N(z) = —FAz + AlJ(Z) — R| == — AgVAZ+
— AgK§'%
x=Fx. (17)



As all dynamics of (14) have been investigated,
is now possible to design an adaptation law ot :
assume then updating functiops; (z, ) such that

rOH
oz

With this in mind it is immediate to write the\-
dynamic as

A = —H(f?,f)

A—A—A= fn(gz,g)T%I; T

Consider now equations (16) with (17) and (18). Thi

new system identifies an interconnection described by:

0H,(Z)
o0z

#=[J(z) - R] +A(0)
with o
T = [55 X A} ,
the HamiltonianH . (z) defined by
1 T
+ XX +

the skew-symmetric interconnection matoxz) de-
fined by:

H,(z) = H(&) %ATA,

- J(@)  01I(z,8)
-I(7,)T 0 0

ite damping matrik defined as:
[R+gKg"™ 0 0
0 —-F0
0 0 0

the positive-defin

R:

b

andA(x) defined by:
A=[gux000]".

It is now possible to state the following proposition
assuring the solution of the tracking problem consid-

ered.

Proposition 1. Consider a permanent magnet syn

chronous motor described by equation (1) and an ex-
ogenous trajectory profile to be tracked defined by (2).

Defining the state tracking errdar = = — x4, the
error state feedback control law generated by the i
ternal model unit:

OH

0%

£ = (F+GV)E — FAZ + AlJ(&) — R]

_|_

— AGVAZ — AGK§ &

: OH
_ ~ T
A = —TI(%,§) oF
v=\NZ)+ V- VAZ - K§Ti

with A defined in (15), matrix4 such thatdg = G,

F an Hurwitz gain matrix ands such that(F, G) is
controllable, assures, provided that and the gain
matricesF and K are suitably defined according to
the constructive proof, that the tracking problem i
globally, asymptotically solved, i.e.

des

lim x =z
t—o0

it Proof. ConsideringH,(Z) as a Lyapunov function,
the proof (remembering thdt is an arbitrary Hurwitz
matrix andK and arbitrary gain matrix) is immediate
considering the time derivative of this Lyapunov func-
tion:

_0H, pOH, OTH

18£ 0z 851:
Ry + k) -

H,

g¥x =

S +L

. . D07
Choosing the gaitks such thatLq—OJk'g < 0, as there
n

q’"p
exist two constantsy; € R andngs € R such that

T I3 - N

Ux < nuallZ [ IxN + nwzllZ2[llxI],
q
it is possible to use Young'’s inequalitydesigning
properly F and K" and assuring that there exigt, €
R", 7z, € RT, 7z, € RT andn, € R such that

Hy < =, 8117 = ma, |22+ (19)
~ s | Z3]|* =y lIxII* < 0.

Hence for LaSalle invariance principle, system'’s tra-
jectory are asymptotically captured by the largest in-
variant set characterized Wy, = 0; then by (19) the
system will asymptotically converge to

thm (3317532757&)() = (0,0,0,0) :

In other words the tracking problem is solved and the
proposition proved

Remark. Electrical motors can be subject to some

asymmetries (e.g. due to some electrical or mechan-
ical faults) that comport the arise of spurious harmon-

ics in the electrical variables. It is possible to model

these effects as sinusoidal signé(¢) superimposed

to the controlled input. For this reason equation (4)

can be rewritten as

: )
E=[1@) ~ Bl + i = ME) — @(@)u(w) +0)
where
Z=Ez
¢ = r(2),
K is a polynomial map; € R?, = is defined by
= =diag{Zo, 21, ..., Z5}, g=20+1
with =0 =0,
Ei[o w’] @ >0 i=1,...,0
—T; 0

andz(0) € Z, with Z C R? bounded compact set;
again, the class of possible fault effects considered,
take into account a polynomial combination of con-
stant and sinusoidal signals with unknown frequen-

s cies, amplitudes and phases.

3 Note that, even ift depends on the stafig the procedure is not
inficiate since the relation is linear.
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