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Abstract: This paper presents a system theoretic approach to, and performance
analysis of improved congestion control methods i.e. the RED (Random Early
Detection)-like AQM (Active Queue Management) algorithms. We revisit the prin-
ciples of Fuzzy-RED and its linear counterparts and examine their advantages and
possible shortcomings from a control theoretical point of view. The performance
comparisons are based on extensive simulations. The major interest is on the
requirement of a nonlinear control law. Copyright c©2005 IFAC
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1. INTRODUCTION

Networks become congested when the load ex-
ceeds network capacity and some of the transmit-
ted packets need to be dropped. The basic idea
behind RED-like algorithms is to drop packets
already before full congestion and thus indirectly
affect the TCP flow control to reduce their packet
sending rate.

Packets usually arrive at the router in bursts
rather than as a steady flow (Leland et al., 1995)
which has always made congestion control diffi-
cult. To improve and preserve performance, sev-
eral Active Queue Management (AQM) algo-
rithms (Branden et al., 1998) have been pro-
posed to be used as a complementary method to
TCP congestion control. One of the most promis-
ing AQM algorithms is Random Early Detection
(RED) (Floyd and Jacobson, 1993). It has been
extensively studied in the past few years.

Recently several alternatives and modifications of
the basic RED algorithm have been proposed and
analyzed by several authors. Research issues vary
from implementing RED or RED-like AQMs to

different network types c.f. ECN (explicit conges-
tion notification) marking systems (Chung and
Claypool, 2003) (Athuraliya et al., 2001) and Dif-
ferentiated Services (Rossides et al., 2002) to their
performance on varying traffic conditions, imple-
mentation and tuning problems. Although some
of them do not strictly use the average queue to
compute congestion they have performance goals
similar to that of basic RED. They will be denoted
here as RED-like AQMs.

The focus of this paper is on control theoretic
approach. Also this type of analysis has been
performed, c.f. classical PI control design (Hollot
and Misra, 2001) or even chaos theoretic approach
(Wang, 2002). The process itself seems to be not
only nonlinear but also time varying due to chang-
ing traffic conditions. This results in difficulties in
tuning and especially in finding good ”global” pa-
rameter settings for different network conditions
(Feng, 1999). In general RED-like AQMs require
either high robustness or adaptive features. From
the control system point of view the proposed
solutions and corresponding research could be cat-
egorized as:



• Event-based approaches which modify RED’s
nonlinear drop probability decision curve:
for example gentle-RED (Chung and Clay-
pool, 2003) or REM (Athuraliya et al., 2001)
• Slow (adaptive/control) algorithms which

modify RED’s parameters. They normally
operate periodically and use average queue
length measurements. The actual decision is
made with event-driven RED: for example
classical PI-control (Hollot and Misra, 2001)
or digital PD-control (Sun and Ko, 2003).
• Direct control algorithms which use actual

queue measurements and produce probabil-
ity which is directly used for drop decision.
They also operate periodically. They imple-
ment various ideas from linear, nonlinear and
even self-tuning control. Fuzzy techniques are
popular for nonlinear treatment, for example
Fuzzy-RED (Chrysostomou et al., 2003).

Although the approaches above seem to be effi-
cient, it is not easy to derive general conclusions
of their overall performance. This is due to two
varying features: traffic conditions and the effect
of tuning parameters. In a linear case one could
apply robust control theory, but in nonlinear case
similar analysis would require exhausting simula-
tions and search procedures using different traffic
cases and different tuning settings.

In this paper we study the nonlinearity require-
ments and robustness issues. We also try to
demonstrate the difficulties encountered when
comparing the approaches. The focus is on direct
RED-like AQMs. The methods used are: basic
RED, fuzzy control and its linearized counterpart.
The rest of the paper is organized as follows.
Chapter 2 outlines the basics of direct RED-like
algorithms. Chapters 3 and 4 present the con-
trollers and networks used in our simulations. The
simulation results are presented in chapter 5. We
conclude the paper in chapter 6.

2. RED-LIKE AQM ALGORITHMS

Conventional RED algorithm (Floyd and Jacob-
son, 1993) operates in an event-based manner.
It uses queue length (qlen) measurements but as
filtered (qave). The drop probalility (Pd) is com-
puted in a nonlinear manner and used for actual
drop decision. The behavior of RED algorithm
is controlled by four fixed parameters. The ones
used in our simulations are presented in Table 1.
For a more detailed discussion about RED, c.f.
(Stallings, 2002).

As presented earlier, direct control algorithms
typically use true non-averaged queue length mea-
surements. They operate periodically and calcu-
late the drop probability. The drop probability

can be presented as a function of past measure-
ments or errors:

Pd(t) = F (qlen(t), ..., QT ) (1)

where qlen(t), ... are the measured queue lengths
at samples t, t− 1, ... The target queue length QT
(setpoint) is typically constant. The function F (·)
is some linear or nonlinear mapping. Sometimes
differences ∆q(t) = qlen(t) − qlen(t − 1), control
errors e(t) = qlen(t) − QT or error differences
∆e(t) = e(t)− e(t− 1) are used instead, resulting
for example

Pd(t) = F1(qlen(t),∆q(t)) (2)

Pd(t) = F1(e(t),∆e(t)) (3)

With a constant setpoint, these formulations do
not change the control law from (1), because for
(2) one could always find F2(·) as

Pd(t) = F2(qlen(t), qlen(t− 1), QT ) (4)

It is more a matter of taste and tuning habits
which presentation is adopted. An example of this
control surface is presented in Fig. 1. Errors and
their differences are generally avoided in nonlinear
control, because it is impossible to distinguish
between two operation points by using the error
information. In our case QT is generally constant
and both presentations can be used. For example
(2) behaves like a nonlinear PD-type controller:
no integral action resulting a stationary set point
error. If one wants to implement integral action,
a typical solution is to use incremental approach

∆Pd(t) = F (e(t),∆e(t)) (5)

This is known as incremental nonlinear PI-type
control. Also this could be presented using (4).

Linear versions of above presented algorithms
could also be used, resulting well-known linear
PD, PI and PD-algorithms. For example using (5)
will result in

∆Pd(t) = k1e(t) + k2∆e(t) (6)

i.e. an incremental PI-algorithm. This approach
within slow adaptation is used in (Sun and Ko,
2003), although misleadingly denoted as ”PD-
RED”. Classical PD-control can be formulated as

Pd(t) = k1e(t) + k2∆e(t) + k3 (7)

Pd(t) = k1(qlen(t)−QT ) + k2∆q(t) + k4 (8)

where k3 and k4 may be used to achieve desired
stationary Pd. An example of typical control sur-
face is presented in Fig. 2. It should be emphasized
that all presented controls are functions of past
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Fig. 1. An example of nonlinear control surface
(Fuzzy-RED in fact). The control surface
shows the relation between the inputs (qlen,
4q) and output variable (Pd).
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Fig. 2. The corresponding linear PD control sur-
face. The basic relationship is linear, but due
to the limiter (Pd = 0) the actual behaviour
is nonlinear.

measurements and setpoint i.e. of the form (1).
The design/tuning means selection of the past his-
tory of measurements used and the mapping itself.
This will define the performance of the algorithm,
not whether qlen, ∆qlen, e or ∆e formulation is
used.

Practical issues considering design and tuning are
important. Some sort of convenient approaches
should be used in practice. A well-known and
efficient tool for nonlinear control design is fuzzy
approach (Jang et al., 1997). The main power lies
in it’s heuristic and linguistic design via rules and
membership functions but also in the fact that it
produces nonlinear mappings when implemented.

3. CONTROL SETUP

The main goal of this research is to study nonlin-
earity and robustness issues: Which sort of map-
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Fig. 3. Fuzzy-RED membership functions. The
output variables in Mamdani-type controllers
have fuzzy membership functions. The vari-
ables qlen, dq and p can be considered as
linguistic variables and the membership func-
tions of a variable are its possible linguistic
values (e.g. The queue length is modest).

ping results in robust and efficient performance?
Which sort of nonlinearity is necessary?

A fuzzy nonlinear control (2) and a linear PD-
type control (8) approach are selected for a more
detailed analysis. This type of fuzzy approach
is used for example in Fuzzy-RED (Rossides et
al., 2002), (Chrysostomou et al., 2003). Their
application uses the formulation

Pd(t) = F (qlen(t),∆q(t)) (9)

which is a suitable presentation for heuristic tun-
ing. This fuzzy controller was implemented us-
ing Fuzzy Logic Inference Engine (FLIEC, 2004).
cFLIE is adapted from the original flie of Insti-
tute of Robotics, ETH, Zurich. It implements a
Mamdani-type FIS with max-type T-norm which
is an adequate solution, although a Sugeno-type
FIS is often favored due to its easier tuning.

Based on trial simulations (interval 4t = 10ms)
we selected three membership functions for both
input parameters and four for the output param-
eter. These membership functions are presented
in Fig. 3. The fuzzy rule base obtained after trial
simulations consisted of 7 rules, the corresponding
control surface is presented in Fig. 1.

In the simulations the fuzzy controller calculated
the drop probability only after each time interval.
For a selected interval (10ms) a 10 Mbps link can
transfer 0.1 Mb. If the packet size is set to 1 kB



this means that only approximately 12 packets
can be sent via the 10 Mbps link during the
interval. This is also the limit to how much the
queue length can decrease during one interval.

The tuning parameters for linear PD-type con-
troller

Pd(t) = (k1e(t) + k2∆e(t) + k3)/100 (10)

were obtained by linearizing (9) around nominal
setpoint (qlen = 30, dq = 0) resulting k1 = 1.0,
k2 = 1.0, k3 = 0 and QT = 30. The corresponding
decision surface is presented in Fig. 2.

The conventional RED algorithm is used for com-
parison. The parameter values used are presented
in Table 1. All the values were selected accord-
ing to the common guideline of RED parameter
settings (Floyd, 2004b).

4. SIMULATED NETWORKS

All simulations were made using network simu-
lator ns2 (ns2, 2004). The network topology is
presented in Fig. 4. The link between routers R0
and R1 was set to 10 Mbps and it represented
a bottleneck link in the network. This link was
controlled by an AQM algorithm and the buffer
size was set to 100 packets. The rest of the queues
were normal dropTail queues and the links other
than the bottleneck link were set to 45 Mbps. All
of the TCP sources implemented the congestion
control measures of TCP Reno while naturally the
sources using User Datagram Protocol (UDP) did
not pay notice to the congestion in the network.
UDP sources kept on transmitting packets at Con-
stant Bit Rate (CBR) throughout the simulation
regardless of whether the network was congested
or not. Most of the sources using TCP protocol
also used File Transfer Protocol (FTP) and simu-
late large file transfers through the Internet.

Main purpose of the simulation was to generate a
set of different traffic scenarios to study the overall

Fig. 4. The network topology. All packets that
arrive at their destination traverse through
the bottleneck link between the two routers
R0 and R1.

Table 1. RED parameters used in simu-
lations.

Symbol Quantity Value

qmin lower threshold for queue 15

qmax upper threshold for queue 45
Pmax value for Pb at qave = qmax 0.1
Wq queue weight 0.002

behaviour of the proposed control algorithms. In
the simulations we varied the number of active
connections as well as the round trip times (RTT)
seen by the sources. A few simulations were also
made where most of the TCP flows were short
and small to simulate HTTP-like web traffic.
Short and small flows contained only few packets
and they did not last throughout the simulation.
The importance of mixing different kinds of flows
in simulations is discussed briefly in (Brownlee
and Claffy, 2002). In most of the simulations we
assumed that the time it takes for the router to
forward a packet from the queue does not depend
on the actual size of the packet to be sent. With
this assumption, a fixed packet size (we used 1
kB) could be used in the simulations, except in
scenario 7 (see below).

Due to the space limitations the used simulation
scenarios are only outlined here:

Scenario 1 : A base level simulation with 30 active
TCP sources (FTP) each having 50 ms RTT.

Scenario 2 : A light traffic load case with only 10
active TCP sources (50 ms RTT).

Scenario 3 : A heavy traffic load case with 120
active TCP sources (50 ms RTT).

Scenario 4 : An increased round trip time: 15
active TCP sources, each having a 200 ms RTT.

Scenario 5 : An UDP traffic case. Added three
UDP sources with constant bit rate (CBR). UDP
portion of total traffic is about 30%.

Scenario 6 : The purpose of this scenario was to
simulate a more realistic situation where most of
the flows are short and the number of active con-
nections varies during the simulation. The Web-
Traf module of ns2 is used for simulating HTTP-
like web traffic. The distributions and parameters
are based on (Chrysostomou et al., 2003).

In this scenario we used 10 active FTP sources and
20 HTTP-clients. This means that the number of
active TCP connections varied between 10 and 30
during the simulation.

Scenario 7 : In real networks (unlike in previous
simulations) packets are of various sizes. This
scenario uses fixed size buffer and queue length
is measured in bytes instead of packets (Floyd,
2004a).



Table 2. Scenarios - Key ratios

Test Drops Through Queue Queue

set Mbps mean st.dev

Scenario 1

RED 2068 10.00 33.3 8.3
Fuzzy 1975 10.00 26.2 7.6

PD (T=30) 1866 10.00 29.9 9.3

Scenario 2

RED 639 9.98 19.8 9.0
Fuzzy 548 9.95 18.9 8.7

PD (T=30) 505 9.92 20.4 11.1

Scenario 3

RED 6399 9.85 47.4 30.3
Fuzzy 6274 10.00 36.8 4.1
PD (T=30) 6284 10.00 42.1 4.4

Scenario 4

RED 145 9.34 8.5 10.2
Fuzzy 88 9.96 13.9 7.9
PD (T=30) 85 9.88 13.4 10.7

Scenario 5

RED 2034 10.00 32.6 11.6

Fuzzy 1836 10.00 26.1 7.7
PD (T=30) 1879 9.99 30.8 9.1

Scenario 6

RED 4154 9.05 40.6 29.2

Fuzzy 1969 9.57 23.0 16.5
PD (T=30) 1524 9.79 24.1 13.3

Scenario 7

RED 2095 5.20 17.5 8.1

Fuzzy 2034 5.19 12.9 5.0
PD (T=30) 1869 5.20 14.7 5.9

For the scenario 7 we used network data collected
from a campus border gateway using NetFlow
(Cisco, 2004) software. Recorded flows were clas-
sified into five classes according to their average
packet size. Finally, based on the actual amount
of packets in each class a number of active TCP
sources were assigned to the classes accordingly.

Control algorithms were scaled to measure the
queue in bytes using average packet size. In this
scenario the average packet size was calculated
to be 522 bytes which is quite close to the ns2
default value of 500 bytes. To make this simula-
tion more comparable with the previous simula-
tions we dropped the link bandwidth between the
routers from 10 Mbps to 5.22 Mbps.

5. SIMULATION RESULTS

The overall comparative simulation results in
Fig. 5 presents mean queue length and its stan-
dard deviation obtained in different simulation
scenarios. It can be used for analyzing the control
system overall performance. For example a PD-
control type of behavior: stationary/steady state
error is clearly present (QT = 30). The variance
is a good measure for controllers capabilities.

More detailed overall comparative simulation re-
sults are presented in Table 2. They include also
throughput measures and drop counts.

It is well known that RED algorithm has severe
robustness problems. It is difficult to find good
general settings so that RED behaves adequately.
As it can be seen from Fig. 5, RED somewhat fails
during scenarios 3 (heavy traffic) and 6 (HTTP-
like traffic).

On the other hand, Fuzzy-RED and linear PD
show clear robustness during all scenarios. A non-
linear one seems to behave slightly better in most
of the cases, but differences are small.

RED seem to perform well on some cases but
have remarkably lower throughput on scenarios 3
(heavy traffic), 4 (longer RTT) and 6 (HTTP traf-
fic). Fuzzy-RED performs better in these cases.

Scenarios 6 and 7 are perhaps most interesting
from the practical point of view because these
scenarios try to simulate more realistic traffic
distribution. Within scenario 6 RED’s throughput
is bad and the linear PD is best. This can also be
seen from the standard deviations. Scenario 7 is
not so clear: RED and the others perform well,
especially from the throughput point of view.

The performance of the linearized PD control is
interesting. Its throughput is somewhat less than
Fuzzy-RED in most cases, but clearly better in
scenario 6.

A large set of different scenarios were simulated
to study control system overall performance. Still,
it seems that the system operates most of time
near similar operation points so that a linearized
control behaves almost as good as a nonlinear one.
It also shows some robustness and didn’t fail in
any scenarios.

Does this mean that a linear treatment is enough?
If we use the linearized control law with a different
setpoint, for example with a setpoint change (QT :
30 −→ 60), control performance is drastically
decreased. This could be seen as a tuning issue,
because one could design a linear controller for
that setpoint. It is nevertheless a clear indicator of
some system nonlinearities. Because the setpoint
is never changed in practice this has mainly aca-
demic interest and a linear controller seems to be
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Fig. 5. Resulting average queue length and queue
st.dev. during simulation scenarios 1...7 (x-
axis). Control algorithms: RED �, Fuzzy �,
Linear PD ∗. The stationary steady state
errors are clearly visible.



an adequate solution from the stabilization point
of view.

6. CONCLUSIONS

This paper presents results when analyzing direct
RED-like AQMs from the control theoretic point
of view. Major goal was to study the requirements
for a nonlinear control law and to analyze result-
ing robustness. Results outline some interesting
performance issues of two selected control laws.

It is obvious and well known that the proposed
methods (Fuzzy-RED and even linear PD control)
have clear benefits over conventional RED. They
have also been shown to be robust and effective.
They are less affected by network delay than RED
and in certain scenarios able to control the queue
with significantly lower packet loss rates.

An interesting result is that a linear decision sur-
face seems to perform almost as well as a nonlinear
one. These results are somewhat preliminary and
require more future research to ensure the analysis
results.

The comparisons clarify also another feature: it is
rather difficult to derive general conclusions how
a RED-like AQM should be designed. Some sort
of generally accepted benchmark set could be a
partial solution, but even this would not remove
the effect of different tuning.
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