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Abstract: The minimum variance (MV) lower bound has been applied to many
multivariable control systems in order to assess their performance based on routine
operating data. However, such analysis often depends on the selection of a suitable
dynamic model of the data and for multivariable systems, there can be many
candidate models. Also, uncertainty is often not considered, because standard
approximations do not exist for the sampling distribution of these multivariable
performance indices. This paper addresses these two issues by using the Bayesian
approach to vector autoregression (VAR) modelling with Markov Chain Monte
Carlo (MCMC) numerical methods. Dynamic model selection is carried out by
using Reversible Jump (RJ) MCMC and it is shown that MCMC can be used
to the estimate the non-standard distributions that exist in multivariable MV
performance indices. The approach is applied to data from an industrial cross-
directional (CD) control system by using a more general class of model than has
previously been studied for these systems. Copyright c©2005 IFAC.
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1. INTRODUCTION

One of the most widespread approaches that is
used in control loop performance assessment is to
apply the minimum variance (MV) lower bound
to routine operating data. In this paper, the MV
approach is applied to cross-directional (CD) con-
trol systems in order to measure the quantity
of closed loop variation that could, in principle,
be eliminated by using MV control. CD control
systems are used to control product uniformity in
many web forming processes and Section 4 of this
paper studies the performance of a system that is
used in a plastic film extrusion process. Typically,
as illustrated in Figure 1, CD control systems are
based on a finished product gauge that is situated
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down-stream from an array of cross directional
actuators and the control objective is to minimise
the cross-web product variation that is observed
by the gauge. The MV lower bound has already
been applied in CD control (Duncan et al., 2000),
but this paper offers a more general model of
the process output and gives better insight into
the measured system performance. Alternative
approaches to CD controller performance assess-
ment include applying the concept of bandwidth
to the CD spectrum and the two-dimensional (2D)
spectrum of the steady state system in order to
report spatial and dynamic performance of the
controller. These principles are used with wavelet
analysis in a system that partitions variation for
performance assessment (Jiao et al., 2000). A
drawback of using the bandwidth is the level of
process and controller knowledge that is required
in order to make the performance assessment.
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Fig. 1. Schematic diagram of a CD control system.

This paper has three further sections. The CD
controller and its MV performance index are de-
fined in Section 2. The Bayesian statistical model
and numerical methods that are used to evaluate
this model and the performance index are given
in Section 3. Finally, in Section 4, a data set from
the industrial process is studied.

2. MV ASSESSMENT IN CD CONTROL

Let the CD control system be given by

yt = q−dg(q−1)Gut + C(q−1)et (1)

where yt is the (M × 1) output vector at time t,
et is the disturbance vector and C(q−1) is a ma-
trix polynomial giving the disturbance dynamics
(Duncan et al., 2000). The actuator set-points are
given by the (N × 1) set-point vector, ut. It is
assumed that the response of the actuator array
separates into a scalar dynamic response, which
is given by g(q−1), and an (M × N) matrix, G,
that describes the steady state spatial response.
In this work, the delay structure is assumed to be
q−dIN , where d is the common delay and IN is
the identity matrix.

The minimum variance lower bound represents
the output variation that would be achieved were
a minimum variance controller to be used in place
of the existing controller. In the case where there
are no restrictions on the actuator settings and
assuming that both the process and disturbance
are stable, the only limitation that is imposed on
the performance of a single input single output
(SISO) minimum variance controller is that of
the process delay. In CD control systems however,
the achievable performance is further restricted by
uncontrollable spatial variation and this analysis
aims to quantify the amount of spatial and dy-
namic variation that would not exist in the process
output, were a minimum variance CD controller
employed. In order to distinguish the variation in
this way, the uncontrollable spatial variation is not
removed prior to derivation of the MV controller.

To solve the minimum variance problem, a d-
step ahead prediction is formed in the process
output, yt. Usually, this is achieved by factoris-
ing qdC(q−1)et into predictable and unpredictable
dynamic components. However, as mentioned, un-
controllable spatial modes must also be considered
in CD control systems and these can be factored
out as follows:

ec,t = Pcet ; eu,t = Puet (2)

such that et = ec,t + eu,t. The matrices, Pc and
Pu = I − Pu are M to M projections into the
controllable and uncontrollable spatial domains.
These are defined from knowledge of the process.
For example, the matrix form of the discrete
Fourier transform, F (Stewart, 2000), can be used
when the highest controllable spatial frequency is
known. This gives Pu = FuFT

u and Pc = FcFT
c ,

where the columns of F are divided between Fc

and Fu according to this frequency. Alternatively,
if the spatial interaction matrix, G is known, the
vectors that span its column space give suitable
projections (Duncan et al., 2000).

Returning to qdC(q−1), the d-step ahead predic-
tion of the disturbance, this can be given by

qdPcCu(q−1) + PcCc(q−1) + PuC(q−1) (3)

The term, qdPcCu(q−1) depends on future inno-
vations and its best estimate is E[et], which is
assumed to be zero. The term, PuCu(q−1) is as-
sumed orthogonal to the spatial response, so its d-
step ahead prediction is the same expression. This
gives the minimum variance controller, KMV (q−1)
and when this is applied to the system equation,
(1) the process output becomes

yt(MV ) =
(PcCu(q−1) + PuC(q−1)

)
et (4)

such that under minimum variance CD control,
the output variation is of the sum of all distur-
bance variation in uncontrollable spatial modes
and the unpredictable dynamic variation in con-
trollable spatial modes. Given a suitable spatial
projection matrix, Pc, a closed loop moving av-
erage model estimated from the process output,
H(q−1), and the error covariance matrix, Σe, the
performance index, η(d) is given by

Σc(MV ) =
d−1∑

j=0

PcH(j)ΣeHT (j)PT
c (5)

Σu(MV ) =
T∑

t=1

PuytyT
t PT

u

η(d) = 1− trace(Σc(MV ) + Σu(MV ))∑T
t=1 ytyT

t



whilst the performance of each CD lane, η(d,m)
can be extracted from the individual matrix
terms.

3. CALCULATING THE INDEX

The performance measure defined above can be
estimated through the closed loop vector moving
average model

yt = H(q−1)et (6)

where H(q−1) denotes the moving average coeffi-
cients and et is usually assumed to be multivariate
Gaussian with mean µe and variance, Σe. Under
a minimum variance controller, the lag order of
H(q−1) is (d−1), but the cross lag order of H(q−1)
cannot be determined so directly. To address this
problem in this paper, the Bayesian approach to
vector autoregression (VAR) modelling is used
and this employs a model of the form

yt = Θ(q−1)yt + et (7)

where Θ(q−1) is a matrix polynomial represent-
ing the autoregressive coefficients. The entries,
θ(i, j, k), enumerate the VAR relationship from
CD measurement cell j to cell i at lag k. The co-
efficients can be specified in a number of intuitive
ways:

• scalar Θ(q−1) is the univariate autoregres-
sion model (Duncan et al., 2000)

• circulant Θ(q−1) and Se is equivalent to
modelling the system through its spatial
modes using univariate autoregression mod-
els (Stewart, 2000; Duncan et al., 2000)

• Toeplitz Θ(q−1) and Se gives a slightly more
realistic representation without the wrap
around of the circulant form (Stewart, 2000)

• unconstrained Θ(q−1) and Se gives rise to a
difficult estimation problem.

The circulant and Toeplitz models give the case
where the VAR coefficients are the same across the
sheet. However, by the nature some CD processes,
the coefficients of Θ(q−1) may only be similar
within localised regions of the web (Mijanovic,
2004), especially when there is a process fault.
The algorithm that is now specified can deal with
all these cases, but the more general model is
very computationally demanding. Methods that
reduce the output dimension, such as principal
components analysis (PCA) can also be used in
conjunction with this approach (Rigopoulos and
Arkun, 2003).

Bayesian methods are used to identify the VAR
models because they offer control over the spatial
structure of the dynamic model through the prior
distributions that are required to perform the

analysis. For example, these prior distributions
can be used to force improbable, high order re-
gression coefficients, which may be influenced by
noise, towards zero. The Minnesota prior that is
used in econometric modelling has such a struc-
ture in which prior belief is that high order co-
efficients are very small (Lükepohl, 1993). More
sophisticated priors are used in spatial statistics,
where distributed models have been developed in
which coefficients belonging to neighbouring sites
are assumed to be similar. These spatial models
are intuitively applicable to the problem studied
here. However, a major difficulty of VAR mod-
elling is in model selection. This occurs because
there are a huge number of model combinations
that can be selected from all possible models and
this problem is addressed here by the Reversible
Jump (RJ) algorithm, which is outlined below,
once the basic procedure for estimating the pos-
terior distribution of the performance index has
been described. This uses Bayes Factors, which do
not depend on the asymptotic assumptions that
are required in many forms of penalised likelihood
analysis, such as the Akaike Information Criterion
(AIC) (Denison et al., 2002).

Closed form solutions are often not available to
the integrals that must be solved in order to per-
form Bayesian inference. The issue applies here to
the normalising divisors of the posterior distribu-
tion of the performance index and the VAR struc-
ture (7). Markov Chain Monte Carlo (MCMC)
methods (Denison et al., 2002) are used here to
overcome these difficulties. MCMC is a form of
simulation in which the aim is to generate random
samples from a target distribution in order to
make empirical inferences about that distribution.
Two forms of MCMC iteration are used in this
paper as follows

Gibbs sampling is carried out by factorising
the otherwise analytically intractable posterior
distribution into full conditional distributions
of parameter subsets that individually have
standard forms. Each iteration of the Gibbs
sampler consists of a random sample being
drawn from each full conditional distribution in
turn, given the current iteration values of all
other parameters.

Metropolis Hastings (MH) sampling copes with
posterior distributions that cannot be factorised
as above. Each MH sampler iteration, candidate
samples are generated from a proposal distribu-
tion and these are accepted as true random sam-
ples from the target distribution according to an
acceptance probability that depends on the cur-
rent state of the MCMC sample sequence. The
RJ algorithm is a special case of the MH sam-
pler in which the Markov chain transitions can
involve parameter vector dimension changes.



Both the above samplers result in a Markov chain
whose steady state distribution is the target dis-
tribution. In this analysis, a Gibbs sampler is
used to sample the parameters, (Θ,Σ) and the
RJ MH sampler is used to sample the VAR lag
structure. The performance index, η(d) can then
be calculated each iteration, based on the current
state of the MCMC Markov chain. As already
mentioned, this gives rise to a further advantage of
the Bayesian approach in estimating the posterior
distribution of η(d), which can be used to measure
uncertainty in the performance. This overcomes
an outstanding problem in multivariate control
loop performance assessment. However, it is noted
that, in a similar manner to the above, the boot-
strap method could be used to provide confidence
intervals around a least squares, or maximum like-
lihood estimate of the η(d).

The likelihood of the time series model (7) is

l(Σ,Θ|Y) = (2π)−T/2|Σ|−0.5 (8)

× exp(−0.5
T∑

t=1

( yt −XtΘ)T Σ−1(yt −XtΘ))

where Xt represents the matrix of lagged and
cross-lagged observations that forms the basis of
the given VAR model at time t (Lükepohl, 1993).

In order to form the Bayesian model, prior distri-
butions must be assigned to the covariance ma-
trix, Σ, the VAR parameters, Θ and the model
order. In this paper, a conjugate, Wishart, prior
distribution is assigned to precision, Pe, which is
the inverse of covariance matrix. This has param-
eters q and R that combine to give the expecta-
tion of this distribution. The VAR parameters are
assigned a multivariate Gaussian prior with zero
mean and variance covariance matrix, W. The
entries in W are used here to represent prior belief
that the associated VAR coefficients are similar
and it is these weights that determine the effective
structure of the resulting VAR model. It is noted
that the model equations can be re-expressed in
a more compact form for the scalar, circulant
and Toeplitz forms of (7). The resulting posterior
distribution, f(Pe,Θ|Y), is proportional to

|Pe|0.5(T+q)−1|Ω|0.5 exp(−0.5tracePeR)

× exp(−0.5
T∑

t=1

(yt −XtΘ)T Pe(yt −XtΘ))

× exp(−0.5ΘT ΩΘ) (9)

Although marginal posterior distributions can be
derived from this expression for the parameters,
these do not have standard forms (Tiao and Zell-
ner, 1964). However, the full conditional distribu-
tions for Θ and Pe do have standard forms, which
can be used to form a Gibbs sampler (Denison

et al., 2002). Let Y represent the process output
stacked into a vector, length (T ×M) and X de-
note the corresponding VAR regressor matrix. By
manipulating (9), mainly to complete the square
in Θ, the full conditional distribution of Θ is
MVN (Θ̂, P−1

Θ ) where

PΘ = (Ω + XT PEX)

Θ̂ = P−1
Θ XT PEY (10)

Further to this, in order to complete the factori-
sation of the posterior that is required to form a
Gibbs sampler, by inspection, the full conditional
distribution of Pe is Wishart with parameters
(T +q) and R+(Y−XΘ)T⊗(Y−XΘ). However,
this depends on the VAR model being specified
and to overcome this, the problem of model se-
lection is now addressed by forming a MCMC
sampler that estimates the posterior distribution
of the lag structure in addition to that of the pa-
rameters of the model. This important part of the
analysis is carried out by using RJ sampling. As
already mentioned above, the RJ MH algorithm
can deal with parameter vector dimension changes
and it can be used to marginalise the distribution
of non-trivial random variables, such as the perfor-
mance index, η(d). This is achieved by sampling
from the model order posterior distribution in
addition to that of the parameters. However, one
of the difficulties this method poses is that dummy
variables must be set up in order to handle MCMC
steps that result in parameter vector dimension
changes, and these must have a meaningful de-
terministic relation to the current state of the
Markov chain. In a procedure similar to that given
in (Denison et al., 2002), this difficulty is handled
by treating the linear parameter vector, Θ as a
nuisance variable and this is integrated out before
the dimension changing step.

Changes to the model structure give rise to
changes in the regressor matrix, X, and a prior
distribution is now defined over the model space
in order to facilitate Bayesian model selection. Let
n+

φ and m+
φ denote the maximal dynamic and spa-

tial lags of the VAR models to be considered. This
two-dimensional lag structure can represented by
a (m+

φ × n+
φ ) matrix of indicator variables, Q

in which Q(i, j) = 1 determines that the co-
efficient, φ(i, j, k), is present in the model. By
definition, this structure is constrained to be spa-
tially symmetric, where if Θ(i, j) is present in the
model at lag k, then so is Φ(−i, j). Without any
further structural constraints on Q (constraints
on the structure are discussed later) the priors
for each entry are assumed to be Bernoulli with
p(Q(i, j, k) = 1) = pQ exp(−0.5σ−2

Q (i + j)2). The
parameters pQ and σQ must be chosen to reflect
prior belief, for example higher order models may



be considered to be less probable. This gives the
overall prior, p(Q)

m+
φ∏

i=1

n+
φ∏

j=1

(pQ exp(−0.5σ−2
Q (i + j)2))Q(i,j) (11)

and the un-normalised posterior is given by the
product (11)× (8). Terms that do not change with
model order can be dropped and it is assumed that
the maximal design matrix, X, is formed from the
data at the onset, such that T remains the same
irrespective of the model order.

For a given model order by (8)-(9), the terms in
the posterior that involve the linear parameters
have a Gaussian form and by the law of total
probability, these can be integrated out to leave
the posterior distribution of just Pe and Q

f(Pe,Q|.)∝
∫

f(Σ,Θ,Q|.)dΘ (12)

∝ p(Q)|Ω| 12 |Pe|
(T+q)

2 −1|PΘ|−0.5|Ω|0.5

× exp {−0.5(trace(RPe))}
× exp

{
−0.5(YT PEY − Θ̂T PΘΘ̂))

}

This distribution does not have a standard form
and it cannot readily be used in a Gibbs sampler.
However, given its form up to the normalising
constant, a Metropolis step can be used sample
the VAR model order from this distribution.

This work imposes the constraint that only con-
tiguous lag structures exist, thus all possible re-
gression subsets are not considered. This means
that if θ(i1, j1) is present in the model, then
θ(i2, j2) must also be present for lags within the
region i2 ≤ i1 and j2 ≤ j1. This leads to the in-
cremental model order transition kernel defined in
Algorithm 1, which adds, or deletes VAR regres-
sion coefficients from the model, whilst preserving
its contiguous structure. Although this forms an
RJ step, the Jacobian for this transformation is
unity (Denison et al., 2002).

Algorithm 1 describes the MCMC steps that are
used in order to give the required posterior dis-
tributions for the performance analysis. Step 1 of
this algorithm draws samples from the posterior
distribution of the linear parameters. This is a
Gibbs sampler step, which samples from the full
conditional distribution of the VAR parameters,
conditional on the value of the model order and
the covariance matrix obtained in the previous
iteration of the algorithm. It can be shown that
when combined with Step 2, which is a Gibbs
step for the covariance, the resulting sequence of
samples are random draws from the posterior dis-
tribution of the model. In step 4, the performance
index and any other statistics of that of concern to

Algorithm 1. Posterior distribution of VAR model and
η(d)
Step 1 Initialise the system by setting Pe =

cov(y − xθ̂LS)−1 where θ̂LS is the least
squares estimate of the parameter vector,
(XT X)−1XT Y.

Step 2 Sample the linear parameters, θ,
from their full conditional distribution,
MVN (θ̂, P−1

θ ).
Step 3 Sample Pe from its Wishart full condi-

tional posterior with parameters (q + T ) and
R + (Y −Xθ)T ⊗ (Y −Xθ).

Step 4 Invert the VAR model to VMA(∞) form,
giving H(q−1). Calculate η(d) using (5); the
VMA model; the projection matrices, Pu and
Pc; and the error covariance Σe = P−1

e . Fur-
ther statistics can be collected for analysis as
required, for example the 2D spectrum of the
process output can be estimated through the
VMA model.

Step 5 Metropolis Hastings sampler step for the
posterior distribution of the lag structure, X.
This is based on (10).

Step 6 Once samples have converged to steady
state, collect for analysis.

Step 7 Repeat steps 2 to 6 until the estimated
posterior distributions, f(η(d)|.) and f(X|.)
converges.

the performance analysis are calculated from the
current MCMC values of the model parameters.
Step 5 is a RJ Metropolis step for the model order.
The target distribution for this step was obtained
in (10) by integrating the linear parameters from
the full model posterior distribution and the pro-
posal distribution used is a random walk within
the a priori feasible model space.

4. RESULTS

The performance index is now used to assess the
CD control system that is used in an industrial
plastic film process. This process extrudes poly-
mer feedstock to form a continuous amorphous
sheet, which is then drawn in a two-stage process,
firstly along its machine direction and then in
the cross-direction. The bi-axially drawn finished
product is gauged just before it is wound onto rolls
at the end of the process. The system delay for
the data set considered is 4 scans and the output
data is plotted as a topological map in Figure 2(a).
The results below have been obtained by using the
Toeplitz VAR form of (7) with an unconstrained
covariance matrix. The performance analysis is
summarised in Table 1. From this, about 11% of
observed variation could be eliminated by a MV
controller. This suggests that the performance of
this system is reasonable. By contrast, a separate
analysis based on the known controller settings



Fig. 2. CD profile data: (a), plotted as a
colourmap and (b) the posterior mean 2D
power spectrum.

Table 1. Posterior mean statistics.

parameter estimate

Total variation - MSE(y) 0.46

Uncontrollable spatial variation 32%

Unpredictable dynamic variation 60%

Predictable dynamic variation 6%

Controllable steady state profile 2%

η(d) 0.11

of this system shows that just under 3% of the
observed variation lies inside the 2D bandwidth
of this system (Stewart, 2000). The variation that
is responsible for this difference in performance is
mainly dynamic variation and this can be seen in
Figure 2(b), which plots the posterior mean 2D
power spectrum of the closed loop output. The
main peak in this chart is outside the very low
dynamic bandwidth of the controller. Although
the performance is good, the relatively high level
of ”controllable” dynamic variation that can also
be seen in the entries of Table 1 could be due
to the controller behaving more aggressively than
optimal and further investigation of the controller
settings has been recommended.

The posterior distribution of η(d) is given in Fig-
ure 3(a). Based on these MCMC results, this dis-
tribution is concentrated over a relatively small
range of values indicating a relatively high level
of certainty in the value of η(d). However, under
different conditions, for example when the perfor-
mance is not so good, more variation is observed
in these values. Figure 3(b) gives the posterior
distribution of the VAR lag structure and it can
be seen that in this case, the dynamic variation is
concentrated at spatial lag zero.

5. CONCLUSIONS

This paper presents a method for analysing the
performance of CD control systems. Similar prin-
ciples are used to the methods considered pre-
viously in (Duncan et al., 2000). However, this
paper offers a more general approach to estimat-
ing the closed loop filter that is required in order
to make the performance assessment and further

insight is gained with respect to the reported
performance. This is illustrated using data from
a plastic film process and further analysis of the
system has been recommended in order to ex-
plain the underlying variation that was identified.
The Bayesian numerical approach of MCMC over-
comes the problem of VAR model order selection
by integrating over the posterior distribution of
the model space and a by-product of this is the
posterior distribution of the performance index.

Fig. 3. Posterior distributions of the performance
statistic, η(d) and the VAR lag structures..
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