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Abstract: In order to be able to shorten the design cycle, automobile manufacturers
are interested in modelling the human perception of engine sounds.
In the first part of the paper the relevant Sound Quality parameters for the
prediction of engine sound comfortability are determined. The inputs are ordered
with Automatic Relevance Determination and the obtained ranking is verified on
the data. In the second part, models are presented to classify and compare cars
on comfortability. Least Squares Support Vector Machines (LS-SVMs) is used
for the classification. The influence of selecting the relevant inputs on the model
performance is illustrated. Copyright c©2005 IFAC
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1. INTRODUCTION

The relationship between automobile manufac-
turers and consumers has changed tremendously
over the passed years. The design of a car has
become more and more based upon the desires of
the consumer. Since consumer desires are subject
to change over time, the design specifications of
a car change as well. This necessitates shorter
design cycles in order to keep up with customer
desires (Schöggl, 1998) (Keiper, 1997).

In the paper the focus lies upon determining
which Sound Quality (SQ) parameters are the
most relevant for modelling the comfortability (as
perceived by a consumer) of engine sounds. In
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order to obtain the opinion of the consumer, jury
tests have to be organized. In such a test, a person
is asked to score each sound on a characteristic,
for example comfortability.

The classic jury test practice is however incompa-
tible with the current evolution of the automobile
industry. Some of the drawbacks are:

Disturbances: A judge-specific bias to the scores
is introduced due to variation of equipment, dif-
ferent interpretation of the questions, noise,. . .

Composition of the jury: A large and balanced
(different background, age, . . . ) population is
necessary for a jury test to be significant.

The above mentioned problems result in a consi-
derable time span (about a month) that is needed
to organize and process a jury test (Fastle, 1997)



Fig. 1. Schematic overview

(Genuit, 1997). This is no longer deemed accepta-
ble.

Objective The most relevant SQ parameters to
predict comfortability of engine sounds will be
selected from a group of 9 parameters. These 9
SQ parameters are recommended by experts from
the automobile industry.

The performance of the model with all 9 SQ
parameters is compared to the performance of
models with reduced input dimension. An optimal
input configuration is determined. This is illus-
trated with models to classify and compare cars
on comfortability.

LS-SVM (Suykens et al., 2002) is chosen as mo-
delling technique. The most relevant inputs are
determined with Automatic Relevance Determi-
nation (ARD) for LS-SVMs.

2. GLOBAL SET-UP

2.1 SQ parameters

The 9 SQ parameters suggested by the experts
can be divided in 3 groups.

A first group of parameters, namely A-weighted
Sound Pressure Level (SPLA), B-weighted Sound
Pressure Level (SPLB) and Zwicker Loudness, is
correlated with the Sound Pressure Level of the
sound. SPLA and SPLB are Sound Pressure Le-
vels with respective weighting functions A and B
(Van der Auweraer and Wykaert, 1998). Zwicker
Loudness is the human perception of sound, and is
calculated from SPL levels by using a conversion
table (Zwicker, 1977).

The second group, namely Articulation Index
(AI), Modified or Open Articulation Index (AIM),
ANSI Speech Interference Level (ASIL) and Pre-
ferred Speech Interference Level (PSIL) (Van der
Auweraer and Van de Ponseele, 1998), describes
how comprehensible a conversation would be with
the sound as background. AI and AIM are based
on a special weighting of the SPL levels. Frequen-
cies that are more important for the understan-
ding of speech receive a higher weighting factor.
The results are normalized. 100% means that a
conversation is perfectly comprehensible. 70% or
less means that conversation becomes difficult.

ASIL and PSIL are the average of the sound
pressure levels over the frequency bands that are
important for speech. Thus, the lower the value
of this parameter, the more comprehensible a
conversation is.

It is clear from the definition that there is a
negative correlation between AI, AIM and ASIL,
PSIL.

A third group of parameters consists of Sharpness
and Roughness (Van der Auweraer and Van de
Ponseele, 1998). Sharpness is based on the Loud-
ness algorithm with higher weighting factors for
the higher frequencies. Roughness is a measure
for the degree of modulation weighted per third
octave of the sound.

It is clear that not all these parameters are in-
dependent. Within the first and second group
there is a strong correlation between the defined
parameters. In a later stage of the modelling the
most appropriate parameters will be selected.

2.2 Data acquisition

Run-ups of 30 significantly different cars were
recorded during road tests (Coen et al., 2004).
A microphone was placed on the left and on the
right of the head support of the driver. In this way
the recorded sound is the actual sound heard in
the car by the driver. This set-up implies that the
engine sound as well as the effect of the isolation of
the interior of the car is taken into account. After
all the opinion of the driver is what is important
for an automobile manufacturer.

The recorded sounds are then used in a jury test.
The participants first fill out a form with some
background information (age, driving habits,‘car
perception’,. . . ). The sound is played and the par-
ticipants give a grade between 0 (not comfortable
at all) and 10 (very comfortable). A judge grades
each sound twice to check the consistency of the
judge. If those 2 grades are too far apart on too
many cars, the scores of this judge are removed
from the dataset.

The jury test consists of 104 judges. The dataset
used here is based on the average score given by
the 79 judges that are consistent.

2.3 Scores processing

For the training of the model, one score for each
car is needed. Simply averaging the scores over
all judges is not a good idea. Each judge has a
different mean and variation (over all cars) which
is presumed not to be significant since the judges
are no experts.



Therefore the scores are normalized to zero mean
and unit standard deviation and subsequently
averaged over all the judges. In this way a judge
with a high variation no longer has a larger impact
on the final score of a car.

3. SELECTING RELEVANT INPUTS

3.1 Automatic Relevance Determination

Automatic Relevance Determination (ARD) is in
fact a special case of a classic LS-SVM with an
RBF kernel (Suykens et al., 2002). With LS-
SVMs all inputs are accorded the same weight. If
however not all inputs are equally relevant to the
model, the model can be improved by removing
the unimportant inputs.

An RBF kernel has the following form:

e
−‖x−xk‖

2
2

σ2 . (1)

If instead of the standard 2-norm a norm with a
diagonal weighting matrix Σ−2 is used, an RBF
kernel can be written as:

e−(x−xk)T Σ−2(x−xk). (2)

ARD determines the elements on the diagonal of
Σ. In this way each input i is accorded an own
weighting factor σi.

Assuming the inputs are normalized (which is the
case), a small σi indicates an important input.
Even a small difference in this input dimension
will have a large impact on the kernel function
because of the small σi.

The performance of ARD will be illustrated by
presenting the function estimated between the SQ
parameters and perception of comfortability for
input dimensions ranging from 1 to 9.

3.2 Relevant inputs for comfortability

In (Bisping, 1997) it is stated that not all SQ
parameters are equally relevant to the perception
of comfortability. The dependence between the
proposed SQ parameters makes this an interesting
test case for ARD.

ARD is now used to rank the available SQ pa-
rameters according to their importance to the
prediction of the comfortability scores. The SQ
parameters that don’t provide a significant contri-
bution to the prediction of the scores are marked
in italic. The order given by ARD is:

(1) Zwicker Loudness
(2) ASIL

(3) AIM
(4) SPLB
(5) SPLA
(6) PSIL
(7) Sharpness
(8) AI
(9) Roughness

If certain SQ parameters are equivalent, they
would be equally relevant for ARD. Since for
example Zwicker Loudness, SPLA and SPLB are
not all at the same position in the ranking, there
is a clear difference in relevance between these
parameters. Remarkable is also the difference in
relevance between AI and AIM.

The most relevant parameter is Zwicker Loudness.
This can be explained intuitively. Most people
define comfortability as a lack of sound. Since
Zwicker Loudness is an indication of the sound
pressure level experienced by humans, this stands
out as the ideal measure for comfortability. The
3 most important inputs are completely inde-
pendent. The 4th most important input however,
SPLB, is linked to Zwicker Loudness.

The results obtained by ARD are now verified
by training LS-SVMs with different input dimen-
sions and an RBF kernel. The input dimension is
reduced sequentially from 9 to 1, retaining only
the most relevant inputs (according to ARD). For
each input dimension 10 independent models are
trained with each time an other random partition
of the available data in training- and testset. The
performance over 10 runs for the different input
dimensions is illustrated in Figure 2. The evolu-
tion of median, mean, minimum, maximum, first
quartile and third quartile over the different input
dimensions is shown.

Especially the median and the first and third
quartile are interesting measures to evaluate the
performance of a model, since they are not sen-
sitive to outliers. The maximum and minimum
percentage give an indication of the worst case
performance.

For input dimension 4 the median over 10 runs
is 100%, and mean and interquartile range reach
a maximum respectively minimum. The inputs
of this model are Zwicker Loudness, ASIL, AIM
and SPLB. Two of these inputs are correlated,
namely Zwicker Loudness and SPLB. In Figure 2
the model performance clearly improves by adding
SPLB. At first sight it might appear strange that
adding an input (SPLB) that is strongly corre-
lated to an existing input (Zwicker Loudness) can
improve the overall model performance. However,
there can be given several reasons for this:

• The new input contains some extra informa-
tion compared to the original input.



Fig. 2. Performance of models with different input dimensions. For each input dimension 10 runs are
performed. The minimum and the first quartile give a lower bound on the model performance.
The maximum and the third quartile give an upper bound. Median and mean illustrate the overall
performance.
The model with input dimension 4 clearly obtains the best performance. The median, the first and
third quartile and the mean reach a maximum for input dimension 4.

• Zwicker Loudness is more important than the
other inputs of the original model. Adding
a correlated input to the model adds extra
weight to Zwicker Loudness.

If the second suggestion is correct, a model with
ASIL, AIM and 2 times Zwicker Loudness as input
should outperform the model with ASIL, AIM,
Zwicker Loudness and SPLB. The results of both
models are compared in Table 1.

Table 1. Model with RBF kernel and as
input ASIL, AIM and 2 times Zwicker
Loudness (A) versus model with an
RBF kernel and as input ASIL, AIM,

Zwicker Loudness and SPLB (B).

Median Mean Std Min. Max.

A 100.0% 94.3% 7.4% 85.7% 100.0%

B 100.0% 91.4% 13.8% 57.1% 100.0%

It’s clear that the model with 2 times Zwicker
Loudness (A) performs better than the model
with Zwicker Loudness and SPLB (B). The mean
is higher and the standard deviation (Std) is
smaller for model A.

Weighting inputs Increasing the importance of
an input can be done by reducing the σ (as it
is done in ARD), by rescaling an input after
preprocessing or by applying an input a second
time. These approaches are equivalent in LS-
SVM with an RBF kernel. Rescaling an input or
adjusting σ is of course the same.

As shown in equation (1), the norm of the diffe-
rence between 2 datavectors is important for LS-

Fig. 3. The effect of applying an input twice

SVM classifiers. Applying the same input twice,
corresponds to rescaling the difference in that
input with a factor

√
2. This effect is illustrated

in Figure 3.

3.3 Correlation analysis

The results of ARD can be compared to the results
of correlation analysis. For each SQ parameter
the correlation is calculated as the cosine of the
angle between the vector that contains the scores
and the vector that contains the value of the
SQ parameter for the different cars. This means
the correlation is normalized between -1 and 1.
The different SQ parameters, their correlation
with the scores vector and their position in the
ARD-ranking are shown in Table 2 for descending
correlation with the comfortability scores.

The ranking obtained with ARD differs strongly
from the one obtained with correlation analysis.
There are several reasons for this:



Table 2. Relevance order by correlation
analysis

SQ parameter correlation ARD ranking

SPLA -0.95167 5
Zwicker Loudness -0.94031 1

SPLB -0.91952 4

PSIL -0.81891 6
ASIL -0.81080 2

AI 0.78781 8

AIM 0.78017 3
Roughness -0.33459 9

Sharpness -0.15915 7

• Correlation analysis is a linear technique.
It cannot take non-linear relationships into
account.

• Correlation analysis evaluates the relevance
of each input separately. ARD tries to find
the most relevant group of inputs.

4. MODELLING

In the paper several models are developed. Firstly
a model that classifies cars on comfortability is
discussed. Secondly a model to compare cars on
comfortability is presented. For each of these
models different input configurations are tested.
In this way the results of ARD are evaluated.
Because of the large variation of the scores over
the different judges, predicting the scores is not
useful.

All the models used here are classifiers. There are
2 possibilities to discretize the continuous scores:

• Divide the scores into classes, and encode
the classes. Build a classifier (classifica-
tion). Used codes are Minimum Output Code
(MOC), One versus One (OO) encoding and
One versus All (OA) encoding (Van Gestel et
al., 2002).

• Build a continuous prediction model (func-
tion estimation) (Suykens et al., 2002), and
then discretize into classes.

The best results for this dataset are obtained with
function estimation (FE).

4.1 Qualitative judgement

4.1.1. Classification in 2 classes Two classes
are defined, namely score smaller than 0 (class
1) and larger than 0 (class 2). The number of
datapoints for each class is:

class 1 class 2
Number 14 16

The medians for the performed experiments are
shown in Table 3. The best results are obtained
with an RBF kernel and FE.

Table 3. Median for different kernels and
encodings, 2 classes comfortability

MOC MOC4 FE FE4

Lin 71.4% 78.6% 85.7% 92.9%
RBF 85.7% 92.9% 100.0% 100.0%

Poly2 64.3% 78.6% 85.7% 92.9%

Poly3 57.1% 71.4% 71.4% 85.7%

Table 4. Median for different kernels and
encodings, 3 classes comfortability

MOC MOC4 FE FE4

Lin 42.9% 57.1% 71.4% 71.4%
RBF 42.9% 50.0% 71.4% 85.7%

Poly2 28.6% 42.9%

Poly3 21.4% 57.1%

Table 5. Median for different kernels and
encodings, 4 classes comfortability

MOC OO FE FE4

Lin 35.7% 50.0% 78.6% 85.7%
RBF 28.6% 28.6% 85.7% 92.9%

Using the results obtained with ARD (see Section
3), this classifier can be derived based on the 4
most important inputs (which are Zwicker Loud-
ness, ASIL, AIM and SPLB). This improves the
model performance significantly. These results are
also shown in Table 3 (MOC4 and FE4 ).

4.1.2. Classification in 3 classes Three classes
are defined as follows: scores clearly smaller than 0
(smaller than -0.25) (class 1), scores around 0 (be-
tween -0.25 and 0.25) (class 2) and scores clearly
larger than 0 (larger than 0.25). The number of
datapoints in each class is:

class 1 class 2 class 3
Number 8 13 9

Experiments with different kernels and encodings
are performed (see Table 4). Only FE with a linear
kernel and an RBF kernel gives acceptable results.
Reducing the input space to the 4 most relevant
inputs (Zwicker Loudness, ASIL, AIM and SPLB)
leads again to better results. The medians of these
experiments are also shown in Table 4 (MOC4 and
FE4 ).

4.1.3. Classification in 4 classes Four classes
are defined: scores smaller than 0.5 (class 1),
scores between -0.5 and 0 (class 2), scores between
0 and 0.5 (class 3) and scores exceeding 0.5 (class
4) . The number of datavectors in each class is:

class 1 class 2 class 3 class 4
Number 5 11 10 4

Experiments with a linear kernel and an RBF
kernel are performed (see Table 5). FE clearly
gives the best results. The performance improves
by restricting the input space to the 4 most
relevant inputs (FE4 ).



Table 6. Median for comparing cars on
comfortability

MOC FE ∆MOC ∆FE

Lin 82.1% 82.1% 85.7% 89.3%
RBF 82.1% 67.9% 85.7% 89.3%

4.2 Comparing 2 cars

The SQ vectors of 2 cars are used as input for the
model. The output is a relative judgement of the
comfortability of both cars. This kind of model
can be used to establish a ranking of cars, and to
fit a new car into an existing ranking.

The dataset was divided into 2 groups for every
run: a trainingset of 23 cars and a testset of 7
cars. Within each group every car is compared
to all other cars in order to compile the actual
dataset. The trainingset thus contains (22+1)22

2 =
253 datavectors, the testset contains (6+1)6

2 = 21
datavectors. Models are trained with 2 different
input configurations: either with 2 SQ vectors as
input (dimension 18) or with the difference of both
SQ vectors as input (dimension 9) (indicated by
∆).

Experiments are performed with an RBF and a
linear kernel, combined with MOC encoding and
FE (followed by discretization) (see Table 6).

The results improve significantly by applying the
difference of both SQ vectors to the input. There
are 2 reasons for this:

• The dimension of the input space is halved
from 18 to 9.

• The structure of the input is more obvious. In
the case with 18 inputs the corresponding SQ
parameters of both cars have to be mapped
to one an other. This adds complexity to the
modelling task.

5. CONCLUSIONS

In the paper ARD is used to determine the rele-
vant SQ parameters for the modelling of the hu-
man perception of engine sound. The most impor-
tant SQ parameters are Zwicker Loudness, ASIL,
AIM and SPLB. This is confirmed for classifying
and comparing cars on comfortability. Most mo-
dels show a significant performance improvement
when reducing the input space to the 4 most
relevant SQ parameters.
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