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Abstract: This paper considers the application of the structured singular value, µ,
and the skewed structured singular value, abbreviated “skew µ”, to the analysis of
a (deceptively) simple MIMO mass-spring-damper system. This example highlights
some pertinent outstanding µ analysis questions, namely the effect of strictly real,
possibly repeated parameters and the limitation of classical grid-based methods.
It is shown that by transforming the original µ problem and using skew µ to
calculate the worst case that more reliable and certifiably safe answers to the
analysis question are determined. A comparison with more conventional µ analysis
methods is presented. Copyright c©2005 IFAC
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1. INTRODUCTION

The study of multivariable systems has now
reached the stage where reliable answers to the
“limit of performance” question are now required.
In particular for system models that allow for
parameter variation or uncertainty, the engineer
wants to know the vector of real physical param-
eters that will cause the worst case to occur. This
paper considers the use of the structured singular
value, µ, and the skewed structured singular value,
abbreviated “skew µ”, for a system where the
associated parameter uncertainty is constrained
to be real. It is well known that the µ anal-
ysis of this type of system provokes significant
computational difficulties for commercial software
packages. This becomes quickly apparent to many
first-time users of the µ-Tools Toolbox (Balas
et al., 1998)) when performing an analysis on a
simple second order mass-spring-damper system.
The µ-Tools lower bound algorithm of (Young and

Doyle, 1997) fails to converge when the uncer-
tainty set is constrained to be real. This is a major
cause of concern, mainly because no useful worst
case problem perturbation will be returned by the
analysis. Of course, since the classic mass-spring-
damper system is SISO, other methods to deter-
mine the worst case are feasible and may be more
appropriate. However, a straightforward extension
to a MIMO double mass-spring-damper (MSD)
system can render many conventional analysis
techniques essentially useless. It is well known
that techniques based on gain margin or phase
margin cannot be used to assess stability for the
MIMO case (Doyle and Stein, 1981). In this paper,
the so-called “µ-paradigm” for the computation
of the worst case (or maximum gain) of an un-
certain double MSD system is considered. In par-
ticular, the merits and drawbacks for the analysis
question where the uncertainty is quite naturally
constrained to be strictly real is discussed. In
this fashion quite subtle limitations in existing



µ analysis software are highlighted quickly in an
accessible fashion. It is shown that a certifiably
safe method for the computation of the worst case
can be obtained by transforming the problem to
include frequency as a real uncertain parameter
in the problem formulation. The analysis then
becomes a single skew µ computation on a con-
stant matrix which is inherently attractive. An
optimization-based skew µ algorithm developed in
(Halton, 2004) is used to determine good lower
bound information. It is shown that by using
this approach a problem perturbation is returned
which is valid for a given user defined frequency
interval. The skew µ upper bound algorithm of
(Holland et al., 2003) is used to determine if any
solution found using the lower bound algorithm is
local or global, and to ensure no higher value of µ
exists over an entire frequency range.

This paper is outlined as follows, section 2 in-
troduces the necessary nomenclature and details
formal definitions for both µ and skew µ. Section 3
introduces the double MSD model and associated
notation while in section 4 three popular (lower
bound) approaches used to determine worst case
solutions for the real µ problem are reviewed.
Section 5 details the necessary transformation and
optimisation-based techniques used to reliably de-
termine the worst case. Results and conclusions
are detailed in section 6 and section 7 respectively.

2. ROBUSTNESS ANALYSIS TECHNIQUES

The µ approach for systems analysis is based on
the observation that problems involving intercon-
nections of LTI systems with uncertain param-
eters and unmodelled dynamics can be reduced
to considering the constant matrix feedback in-
terconnection in figure 1. The uncertainty block
∆ is structured where three non-negative integers
mr, mc and mC specify the number of uncer-
tainty blocks of each type. The block structure
K(mr,mc,mC) is an m-tuple of positive integers:

K = (k1, . . . , kmr , kmr+1, . . . , kmr+mc , . . .

. . . kmr+mc+1, . . . , km)

with m = mr + mc + mC . This m-tuple specifies
the dimensions of the perturbation blocks, which
determines the set of allowable perturbations,
namely define:

XK =
{

∆ = block diag
(
δr
1Ik1 , . . . , δ

r
mr

Ikmr
, . . .

δc
1Ikmr+1 , . . . , δ

c
mc

Ikmr+mc
, ∆C

1 , . . . , ∆C
mC

)}

with:

δr
i ∈ R, δc

i ∈ C, ∆C
i ∈ Ckmr+mc+i × kmr+mc+i

Note that XK ⊂ Cn×n (where n =
∑m

i=1 ki)
and that this block structure allows for repeated

M
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Fig. 1. Canonical µ analysis framework

real scalars (δr
i I), repeated complex scalars (δc

i I),
and full complex blocks (∆C

i ). Noting this block
structure, the following definition, taken from
(Doyle, 1982) is introduced.

Definition 2.1. The structured singular value, µK(M),
of a matrix M ∈ Cn×n with respect to a block
structure K(mr,mc,mC) is defined as:

µK(M) =
1

min
∆∈XK

{σ(∆) : det(In −∆M) = 0}

with µK(M) = 0 if no ∆ ∈ XK solves det(In −
∆M) = 0. Linear Fractional Transformations
(LFTs) are used to reorganize a perturbed prob-
lem with uncertainty into the feedback intercon-
nection in figure 1. In particular, if M ∈ Cn×n is
partitioned as:

M =
[
M11 M12

M21 M22

]
(1)

with M11 ∈ Cn1×n1 , M22 ∈ Cn2×n2 and n = n1 +
n2, then an upper LFT will be described as:

∆ ∗M = M22 + M21∆(In1 −M11∆)−1M12 (2)

If two block structures are defined as XK1 ⊂
Cn1×n1 , XK2 ⊂ Cn2×n2 , then the augmented
block structure XK̂ ∈ Cn×n is defined as:

XK̂ = {∆ = block diag(∆f ,∆v) :
∆f ∈BXK1 , ∆v ∈ XK2}

where BXK1 = {∆f ∈ XK1 : σ(∆f ) ≤ 1}. The
skewed structured singular value is the smallest
structured singular value of a subset of pertur-
bations that destabilizes the system M with the
remainder of the perturbations contained within
a fixed range. Formally stating this

Definition 2.2. The skewed structured singular
value, µs

K̂(M), of a matrix M ∈ Cn×n with re-
spect to a block structure K̂(mrf

,mcf
, mCf

,mrv ,mcv ,mCv )
is defined as:

µs
K̂(M) =

1
min

∆∈XK̂
{σ(∆v) : det(In −∆M) = 0}

with µs
K̂(M) = 0 if no ∆ ∈ XK̂ solves det(In −

∆M) = 0.
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Fig. 2. MIMO mass-spring-damper model

3. MOTIVATING EXAMPLE

Consider an apparently simple double MSD in fig-
ure 2. The forces on the masses are the inputs and
their respective displacements are the outputs.
The state and input matrices are derived as:

A =




0 0 1 0
0 0 0 1

− k1

m1

k1

m1
− c1

m1

c1

m1
k1

m2
− k1 + k2

m2

c1

m2
− c1 + c2

m2


, B =




1

m1
0

0
1

m2
0 0
0 0




This is a popular example in control theory and
is an excellent illustrative example of a relatively
simple MIMO system. The question arises for the
vector of physical parameters mi, ci and ki which
are fixed but uncertain is “how is it possible to re-
liably assess the robust stability of this system?”.
From a µ analysis perspective, it should be noted
that the type of uncertainty that is necessary to
represent the variation in the physical parameters
will only be real valued. It is also necessary to
emphasize that the uncertainty associated with
the physical parameters will be repeated due to
the reoccurrence of the same parameter multiple
times in the state equations. In order to assess the
robustness of the system using µ, an LFT must
be generated. The associated perturbation block
contains both real repeated and nonrepeated un-
certain parameters and is given by:

∆ = diag
(
δr
m1

, δr
m2

, δr
c1

I2, δ
r
c2

, δr
k1

I2, δ
r
k2

)
(3)

In this canonical form, it is possible to carry out
a classical µ analysis using a frequency grid. The
problem with any approach of this kind is that it
has been shown in (Barmish et al., 1990) that real
µ is discontinuous as a function of frequency. This
means that if a point discontinuity exits, it may be
missed due to the nature of the grid-based search.
For an illustrative example, see (Sideris, 1992). It
should also be noted that analytical methods to
determine potential frequency points where real
µ is discontinuous become quickly infeasible for
large perturbation sets.

4. LOWER BOUND ALGORITHMS

To obtain a better lower bound on real µ and/or
a worst case problem perturbation, three differ-
ent frequency-based methods are now discussed.
These include an approach where the worst case is
assumed to occur at some combination of extreme
values, an approach outlined in (Dailey, 1990), a
regularization method detailed in (Packard and
Pandey, 1993) and an optimization-based method
presented in (Iordanov, 2003).

4.1 Worst Case at Extremities?

Undergraduate linear programming texts suggest
that, in general, the worst case problem pertur-
bation can be obtained at the extremities of the
allowable range of variation for each uncertain
variable. These extremities can be considered as
vertices of a “box” in the parameter space. An
obvious drawback is that the number of combina-
tions that need to be checked for each addition
of an uncertain parameter grows at 2n where n
is the number of uncertain parameters. Conse-
quently, the search for a worst case solution is
exponential time and soon becomes infeasible for
large perturbation blocks.

4.2 Dailey’s Method

In the search to determine a worst case problem
perturbation associated with real µ, Dailey’s algo-
rithm is often used (Dailey, 1990). Based on Dai-
ley’s conjecture, the search for finding a solution
to:

det(In −∆M(s)) = 0 (4)

reduces to solving only two uncertain parameters
δr
i and δr

j at any given time. Using a combi-
nation of matrix algebra and a number of de-
terminant identities, determining a solution for
equation 4 reduces to finding the real roots of a
set of two quadratic equations in δr

i and δr
j . If

the solutions are complex, then no real solutions
exist. Although proposed as a possible method to
potentially determine the exact value of µ, this
technique provides a lower bound since counterex-
amples exist (Holohan and Safonov, 1993).

4.3 Regularized µ Lower Bound

A lower bound for real µ that can be computed
in polynomial time, denoted as a regularization
method, is proposed (Packard and Pandey, 1993).
This approach, which is suggested in the µ-Tools
manual as a solution to the real µ problem,
“regularizes” the original µ problem by essentially
adding a small amount of complex uncertainty



to each real parameter. By doing this, a small
amount of phase uncertainty is added to the gain
uncertainty. It is subsequently shown that the new
mixed µ problem is continuous unlike its real µ
counterpart. Given M ∈ Cn×n and the block
structures XK1 ⊂ Rn×n and XK2 ⊂ Cn×n, the
algorithm is based on the following theorem.

Theorem 4.1. (Regularized µ)
Let 0 < ε ∈ R. Suppose that M(s) has all of
its poles in the open left-half-plane (i.e. nominal
stability) and let β > 0. Given XK compatible
with M(s), define a new uncertainty structure XK̂
as:

XK̂ =
{
block diag(∆1, ∆2) : ∆1 ∈ XK1 , ∆2 ∈ XK2

}

Then for all ∆ ∈ M(XK̂) with ‖∆‖∞ 6 β, the
perturbed closed-loop system is (well-posed and)
uniformly stable if and only if:

µK̂

([
1

β
M

√
ε

β
M

√
ε

β
M

ε

β
M

])
< 1 (5)

where µK̂ (·) is continuous for the frequency inter-
val ω ∈ [0,∞].

4.4 Optimization-based µ Lower Bound

An optimization-based lower bound solution for
real µ that works well on relatively large practical
applications and potentially returns more useful
worst case destabilizing information is presented
in (Iordanov, 2003). For consistency of notation,
it is now stated in a slightly different form.

Theorem 4.2. (Optimized µ lower bound)
Let 0 ≤ ∅d ∈ R. For M ∈ Cn×n and any
compatible block structure K(mr, 0, 0), a lower
bound on µK(M) can be determined from:

µK(M) =
1

min
∆∈XK

{‖∆‖ : | det(In −∆M)| ≤ ∅d}

where the solution is (the inverse of) a constrained
minimization optimization problem.

4.5 Merits/Drawbacks of Each Approach

Dailey’s conjecture is a very attractive approach
but like the search over all extremities, the algo-
rithm is exponential time since it is necessary to
search each 2-dimensional face of a n-dimensional
hypercube. This limits the algorithm’s usefulness
to low order perturbation blocks. A more sig-
nificant drawback is the fact that only nonre-
peated real uncertain variables can be tolerated
in the perturbation block. Therefore, it cannot
be used on, for example, the MIMO mass-spring-
damper system. An important benefit of the

regularization-based solution is that the original,
potentially discontinuous, strictly real problem is
transformed into a continuous mixed one. A fur-
ther benefit is that the µ-Tools algorithms may be
used to determine the bounds on µ in polynomial
time. However, a drawback of this approach is
the selection of ε and tests must be performed
a priori to ensure that the regularized model
still represents the original system satisfactorily.
A further drawback is the increase in the original
problem size. In fact, the regularized perturbation
block is double the size of the original. It can
be shown that worst case problem perturbations
returned are dominated by the complex entries
and extracted real solutions are, in general, not
valid. Consequently, no worst case information
is obtained. The optimization-based method has
many advantages over the regularization-based
approach. No transformations are required and it
has been shown in (Iordanov, 2003) that improved
lower bound solutions are obtained. A further
advantage is that useful explicit worst case infor-
mation is returned from the unwrapped problem
perturbation. Two drawbacks exist, the first is
a feature of the algorithm and the second is a
feature of the approach. Since any optimization-
based approach is heavily reliable on it initial
starting solution, a number of iterations may be
necessary to determine the best lower bound solu-
tion for µ at each frequency point. If a minimum
number of 10 restarts are necessary, this means
that the computation time increases by a factor
of 10 over its µ-Tools counterpart. Regardless,
the solution search remains polynomial time. The
second drawback is that the uncertainty block
remains real, therefore it remains a grid-based
approach and is potentially unreliable.

5. A SKEW µ APPROACH

The following theorem extends results first pre-
sented in (Sideris, 1992).

Theorem 5.1. (state-space µ)
Suppose that M(s) has all of its poles in the open
left-half-plane and let β > 0. Given a minimal
state-space representation of M(s) and given XK
compatible with M(s), define a new uncertainty
structure XK̂ as:

XK̂ =
{
block diag(δr

ωIp, ∆) : δr
ω ∈ R, ∆ ∈ XK

}

then for all ∆ ∈ M(XK) with ‖∆‖∞ 6 β, the
perturbed closed loop system is uniformly stable
if and only if:

µK̂(H) < 1 (6)
where:

H =


 jα(A− jω0Ip)

−1
√

α

β
(A− jω0Ip)

−1
B

−j

√
α

β
C(A− jω0Ip)

−1 − 1

β

(
C(A− jω0Ip)

−1
B −D

)





with ω0 = (ω + ω)/2 and α = (ω − ω)/2.

A full description of the this approach is presented
in (Halton, 2004) where it is shown that this
transformation may be recast as a skew µ problem
where frequency is the skewed parameter. It is
now possible to obtain the worst case perturbation
from this test and the value of δω containing the
worst case frequency information. Furthermore,
this information may be determined or unwrapped
using the following expression for this approach:

s = j (ω0 + αδω) (7)

Using this transformation, an optimization-based
approach may be used to determine a lower bound
on skew µ where the uncertainty is constrained to
be real.

Theorem 5.2. (Optimized skew µ lower bound)
Let 0 ≤ ∅d ∈ R. For M ∈ Cn×n and any
compatible block structure K̂(mrf

, 0, 0,mrν
, 0, 0),

a lower bound on µs
K̂(M) can be determined from:

µs
K̂(M) =

1
min

∆∈XK̂
{‖∆νl

‖ : | det(In −∆M)| ≤ ∅d}

where the solution is (the inverse of) a constrained
minimization problem.

In order to obtain quality solutions, it is neces-
sary to relax the nonlinear equality constraint in
equation 2.1 to an inequality with the introduc-
tion of ∅d to counteract the non-convex nature of
the problem search. Note that “∅d” is the digital
implementation of zero and is generally of magni-
tude 10−8 or less. The uncertainty block structure
is implemented where one optimization variable
represents a real-valued uncertainty parameter.
This lower bound algorithm has been developed in
Matlab using the Optimization Toolbox (Branch
and Grace, 1996) and may be used with the state-
space formulation to counteract the discontinuity
issue associated with real µ, and provide valid
problem perturbations. An upper bound on skew
µ may be obtained using the generalized eigen-
value formulation of (Holland et al., 2003) and is
quantified in the following theorem.

Theorem 5.3. (Mixed skew µ upper bound)
For M ∈ Cn×n and any compatible block struc-
ture K̂, a skew µ upper bound, νu, can be calcu-
lated from:

(
A+

1
νu
B

) 


x1

x2

x3


 = 0 (8)

where:

A =
[

M11M
∗
11 − If M11M

∗
21 0

M21M
∗
11 M21M

∗
21 I

0 I 0

]
(9)

and:

B =
[

M12M
∗
12 M12M

∗
22 0

M22M
∗
12 M22M

∗
22 0

0 0 I

]
(10)

In its current format, the formulation in equation
8 does not detail or consider standard D and
G scaling matrices associated with calculation of
the standard µ-Tools upper bound, reflecting the
structure of the associated perturbation block.
It is detailed in (Halton, 2004) how this scaling
is considered and implemented. Both upper and
lower bound algorithms are available in beta form
and will be implemented as part of the next
release of the freely downloadable “MuExplorer”
software (Iordanov, 2003). The performance of
each approach is now illustrated on the double
MSD example.

6. RESULTS

Using the Matlab µ-Tools Toolbox, it is possible
to assess the robust stability characteristics of the
system for the arbitrary values and levels of uncer-
tainty given in figure 2. The resulting bound(s) on
µ are shown in figure 3. The µ-Tools lower bound
algorithm failed to return any solution hence
no lower bound is plotted. The µ upper bound
plot illustrates the danger of a frequency grid
approach, displaying a very sharp peak for the
frequency response. Using a regularization-based
approach has the attractive feature of transform-
ing the problem into a mixed uncertainty problem.
This ensures the problem is continuous and the
µ-Tools lower bound algorithm may be used to
obtain improved solutions. The lower bound plot
shown is for 1% scaled complex uncertainty. Over
the apparent critical range of [0.1,10] rad/s, the
bound is extremely poor. Moreover, increasing the
percentage uncertainty changes the transformed
problem significantly from the original. Indeed,
even for frequency points where the bound is tight,
no worst case information is obtained from the
extracted real uncertain variables. Irrespective,
the result from the frequency sweep indicates that
the system is robustly stable for the introduced
levels of uncertainty.

Transforming the problem using equation 5.1, up-
per and lower skew µ bounds may be obtained
(corresponding to the upper and lower bounds on
the peak value of µ) over predefined frequency
intervals. The decades corresponding to the crit-
ical range of [0.1,10] rad/s are intuitively subdi-
vided into 10 sub-intervals. Both upper and lower
bounds are included in figure 3. The peak value
of µ alarmingly exceeds unity for the interval
[0.8,0.9] rad/s, verifying that the system is not
robustly stable. It is evident that the solution



Table 1. Unwrapped uncertain values.

δr
m1

δr
m2

δr
c1

δr
c2

δr
k1

δr
k2

0.8066 0.1353 -0.9342 0.9274 -1.000 0.5871

m1 m2 c1 c2 k1 k2

4.2099 6.4059 0.7197 1.4436 1.200 4.9394

Table 2. Robust stability results.

Description Points/Intervals Max µ Freq

µ-Tools UB 300 points 0.9210 0.9259
µ-Tools Reg LB 300 points 0.5051 25.00
SS skew µ UB 20 intervals 1.1361 [0.8,0.9]
SS skew µ LB 20 intervals 0.5182 [10,100]
µ-Tools UB 100 points 1.1322 0.8618

search for the optimization-based lower bound
algorithm is locating local optima. As in the case
of the regularization-based lower bound search,
the peak lower bound value obtained using this
approach is within the interval [10,100] rad/s.
Improved solutions may be obtained by relaxing
the associated nonlinear constraint by reducing
∅d. This is user-defined and must be chosen on a
case-by-case basis. Regardless, a valid worst case
problem perturbation is always obtained using the
optimization-based solution, as shown in table 1.
The skew µ upper bound result is validated by
performing a very dense frequency sweep of 100
grid points for the interval [0.8,1] rad/s. The peak
value is indicated by an asterisk * in figure 3 and
exceeds unity. It is important to emphasize that
this result does not and will not exceed the skew
µ upper bound result. The added benefit of this
frequency interval or bounded approach is that
it is far more computationally efficient than any
frequency sweep. All key results obtained from
each approach are shown in table 2.

7. CONCLUSIONS

An overview of existing algorithms to determine
lower bound solutions on real µ were outlined. The
basic drawback with all of the approaches is that
even if an improved lower bound is obtained, they
are all based on a grid-based search and therefore
are unreliable due to the discontinuous nature of
real µ. Instead transformation of the original µ
problem into a skew µ where the peak value of µ is
sought counteracts the discontinuity issue. It was
shown for a MIMO mass-spring-damper example
that both skew µ algorithms using a frequency
bounded state-space formulation return more re-
liable and safe results than any conventional grid-
based µ analysis approach.
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