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Abstract: Forecasting is one of the most challenging fields in the industrial research, due 
to its importance in practice and to the variability and number of elements that should be 
considered. In this context, the usage of Artificial Neural Networks has proved to be 
particularly advisable, thanks to their ability to approximate any kind of function within a 
desirable range. While most of the literature concerns with the definition of the 
characteristics of an ANN, there is only a few number of contributions that address the 
pre-analysis of the data, and seems there is no recent work about the pre-processing of the 
patterns to submit as input to the ANN. The aim of this paper is to propose a novel 
approach to the time series forecasting activities through the identification and 
exploitation of information hidden – or latent – into the values and the structure of a 
seasonal time series. In order to do this, the time series is decomposed into parts, for each 
of which some local measures are evaluated: such measures are intended to improve the 
forecasting ability of the ANN. Moreover, to exploit the “regularity” of a seasonal time 
series, the concept of Seasonal Periodic Index (SPI) has been introduced. Results 
obtained from the tests confirm the effectiveness of the usage of the local measures and of 
the SPI.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Forecasting is one of the most challenging fields in 
the industrial research, mainly due to its importance 
in any demand planning process and to the variability 
and number of elements that should be considered in 
the implementation of an effective prediction 
process, supported by suitable methods and 
techniques. 
Forecasting techniques range from quantitative to 
subjective evaluation, depending on the objective of 
the forecast activity and the type of prediction being 
obtained.  
Focusing on quantitative methods, two main classes 
can be singled out: 

 Extrapolative methods: these methods aim to 
find some characteristics of a set of sequential 

observations (referred to as time series) that 
show a repetitive behaviour. Exponential 
smoothing techniques are an example of these 
methods. 

 Explicative methods: these methods correlate one 
or more independent variables to one observed 
variable (i.e. dependent from the other 
variables), which has to be predicted. Examples 
are simple and multiple regression models.  

 
In this context, Artificial Neural Networks (ANN), 
whose application in forecasting is discussed in this 
paper, are quantitative techniques which can be  used 
either as universal regressors – thanks to their ability 
to approximate almost any kind of function (mainly, 
feedforward (Thiesing, and Vornberger, 1997; Crone, 
2002) and Radial Basis Function networks (Ciocoiu, 



 

     

1998; Zemouri, et al., 2003) – or extrapolative 
methods, due to their feature to recognize pattern’s 
characteristics through time (especially with time 
delay (Conway, et al., 1998) and recurrent neural 
networks. 
While most of the literature concern with the  
characteristics of an ANN (Hegazy and Salama, 
1995) – i.e. topology, number of layers, number of 
neurons per layer, activation functions an so on – 
there are only a few contributions that address the 
pre-analysis of the data. For example, the analysis of 
the input data could be performed through the 
Principal Component Analysis, in order to reduce the 
size of the input space (Cloarec and Ringwood, 
1998) and avoid the curse of dimensionality (the 
exponential growing calculation effort needed as the 
input space grows).  
On the other hand, it seems that there is no recent 
work about the formation process of the patterns to 
submit as input to the ANN.  
The idea at the basis of this work is that input 
patterns should be carefully organized in order to 
contain not only the values of the time series – as 
done generally in most applications – but also other 
information gathered from the time series itself. 
This information could be obtained through an 
opportune pre-processing activity performed on the 
data.  
In the following of this paper, an input pattern 
definition process is proposed, in order to enrich the 
information that the ANN could exploit for the 
forecasting. 
More precisely, the paper is organized as follows: 
section 2 describes the differences between the 
traditional approach to forecasting with ANN and the 
proposed new approach; section 3 presents the 
assumption at the basis of the proposed forecasting 
model and the structure of the input pattern, 
characterized by the concept of local measures. In 
section 4 the definition process of the input pattern is 
presented: this process is the basis of the forecasting 
model, introducing the concept of Seasonal Period 
Index. Section 5 briefly exposes the structure of the 
ANN, while section 6 reports about the results 
obtained during the application of the model. Finally, 
in section 7 some conclusion remarks and further 
extensions are proposed. 
 

 
2. FORECASTING TIME SERIES USING 

NEURAL NETWORK 
 

The forecasting of a time series through an ANN 
could be performed in several ways, as stated in the 
previous section.  
The general approach (with the exception of the 
usage of time delay ANNs) consists in the 
partitioning of the time series in a set of equally sized 
patterns – i.e. the same number of observations per 
pattern – that are presented to the ANN during the 
learning phase, together with the expected response.  
This approach is based on the assumption that each 
observation Ai depends on the previous t values of 
the time series Ai-1, Ai-2,…,Ai-t. 

Starting from this approach, the idea at the basis of 
the model proposed in this work is to improve the 
performance of the ANN using information that is 
not explicitly represented by the time series values, 
but is hidden both in the values and in the “structure” 
of the time series. 
In order to accomplish this, the assumption becomes 
more extended: each observation Ai of the time series 
could be seen as a combination of the information 
somewhat connected or represented by previous t 
observations.  
It is important to note that we used the term 
information, which implies only an indirect reference 
to the numerical values of the observation, while 
referring strongly to other type of knowledge that is 
considered embedded but hidden in the time series. 
Stated this assumption, the key of the forecast task 
becomes the identification and the exploitation of 
such information. 
For example, the value of the next observation could 
be related to the mean of previous t values (as in the 
moving average methods): the mean of the t values is 
a piece of information which is different from the 
numerical value of the observations. 
The reference to the moving average methods is 
significant also to explain another extension to the 
starting assumption, that seems to be reasonable: 
since the moving average considers only the last t 
values of the time series, we could assume that the 
information is local, i.e. is related only to a piece of 
the time series, and could be different depending on 
the part considered (see for example Nottingham and 
Cook, 2001) 
For all these reasons, the proposed model, instead of 
focusing the attention on the structure and the 
characteristics that the ANN should have in order to 
perform adequately, focuses its attention on the data 
(i.e. the time series in input) and on the information 
that could be extrapolated from them, in order to 
support the forecasting activity. 
In particular, the attention is concentrated on 
seasonal time series (with and without trend), 
because of the intrinsic difficulty involved in the 
prediction of such series. 
 
 
3.  THE ASSUMPTION OF THE FORECASTING 

MODEL 
 

Each forecasting technique is based on some 
assumptions and hypothesis: our assumptions (or 
hypothesis) could be stated as follows: 
a) Any behaviour of the time series observed in the 

past will repeat itself in the future. 
b) Any observation of the time series could be seen 

as the result of the combination of the 
information embedded – implicitly or explicitly 
– in previous observations. 

c) Such information is local to a particular subset of 
the available time series, i.e. such information 
changes depending on the time series under 
analysis. 



 

     

d) There is a totally random fluctuation that could 
not be reasonably eliminated, but the entire 
series is not completely random (Not Random 
Walk Hypothesis) 

 
The first assumption is the well-known Hypothesis of 
Continuity, which is the base for almost all the 
forecasting methods based on time series analysis: 
we could only predict the future studying the past 
and assuming that the past will repeat itself in the 
future, hopefully almost unvaried. 
The second assumption is derived from the so called 
Weak Form Efficient Market Theory (Fama, 1970;  
Sitte and Sitte, 2002) which the Random Walk model 
(mentioned in the fourth assumption) is an extension 
of. As explained in section 2, each observation is 
seen not only as a combination of previous values 
(such as in the moving average methods or in the 
exponential smoothing technique), but it is also 
influenced by the information (i.e. not explicit, but in 
some case easily obtainable) embedded into previous 
values. Such information is quantitative, due to the 
mathematical nature of the ANN. 
The third assumption states that, if we consider only 
a subset of the time series, we could find in such a 
set enough information to be used to forecast the 
next value of the series. In other words, each 
observation has in its neighborhood a hidden, latent 
information that could help in the prediction.  
Finally, the fourth assumption says that it is almost 
impossible to predict exactly the values in a real time 
series, because of the presence of random and 
unknown hidden phenomena. It is difficult to model 
or quantify such elements, so the prediction should 
not be represented by a single value, but by a range 
of possible values. 
Given these assumptions, in our work we attempted 
to improve the forecasting results provided by a 
feedforward ANN by exploiting information 
embedded into the time series. More precisely, we 
would say local information, meaning a set of 
measures (as said, the information considered is 
quantitative) evaluated considering only a few 
observations at a time. 
In practice, time series are partitioned into subsets, 
each characterised by the following measures: (i) 
mean value; (ii) variance; (iii) slope of the regression 
line that fits the subset (referred to as regression 
slope in the following). 
Each subset, with its related local measures, is the 
basis for the construction of the input patterns for the 
network learning process. 
 
 

4. DEFINITION OF THE INPUT PATTERN 
 
The main task of the proposed model is the definition 
of the input patterns of the ANN, starting from the 
sequence of values of the time series. 
Before describing the structure of the input patterns, 
it is useful to introduce some definitions: 

 LS: the length of the time series (i.e. the number 
of the observations in the series); 

 W: the “window extension”, meaning the number 
of time series observations that constitute an 
input pattern; 

 L: the number of the observations within a single 
seasonal cycle; for example, if the season is over 
one year and the observations are monthly 
registered, L will be equal to 12; if, instead, the 
observations are gathered every 3 months, L will 
be equal to 4.  

 
Starting from a seasonal time series of length LS, 
each input pattern will be formed by W sequential 
observations, while the target value is represented by 
the W+1 value.  
As defined previously, we make use of local 
information for each pattern, represented by the mean 
and the variance of the W observations of the 
patterns, plus the slope of the regression line that fits 
such W observations. 
Moreover, in order to exploit the “regularity” of 
seasonal time series, we introduce another element to 
the discussion: if the time series has a seasonality 
period of L observations (i.e. the series repeats itself 
every L observations) we could provide the ANN 
with such information, thus reducing the training 
period and improving the quality of results. 
For this reason, beyond the above illustrated 
measures, we have added a further set of inputs, 
namely the Seasonal Period Index (SPI). This is an 
array of L binary values, which is subjected to the 
following constraint: 
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where SPI[i] represents the seasonal array.  
Thus, for each pattern only one element of the SPI 
could be set to 1. The position p of the array which 
stores the non-zero value in a pattern is defined 
according to the following expression: 
 

( ) 1mod += Lhp  
 
where h is the position of the target value in the time 
series for the forming pattern (so h ∈ [1 ; LS]). 
Obviously, p ∈ [1 ; L]. 
As a result, we have a set of patterns composed by 
W+3+L elements.  
Figure 1 may help in understanding the process 
illustrated above. 
As shown, the first pattern is composed by three 
sequential values of the time series (W = 3). The 
mean, the variance and the regression slope of these 
three values are computed and compose the other 
three elements of the pattern. 
Most interesting is the last part of the pattern: 
supposing that the season is over four periods, we 
add four binary values as defined before. 
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Fig. 1. The input pattern definition process 
 
In order to define which is the only non-zero value, 
we have to look at the target value: since the target 
value is in the fourth  position (h = 4) and L = 4, the 
non-zero position in the SPI  is: 

( ) 114mod4 =+=P  
 
So, the 1 should be positioned in the first cell of the 
SPI array. The second pattern will have the 1 in the 
second position of the SPI array and so on. 
 
 

5. THE ANN AND THE LEARNING 
ALGORITHM 

 
The ANN used in this work is a feedforward 
backpropagation network with one hidden layer 
(with logistics activation function) trained with the 
Levenberg-Marquardt (LM) supervised learning 
algorithm. 
This algorithm, as the quasi-Newton methods, has 
been purposely designed for providing an 
approximation of the Hessian matrix of the 
performance function, improving the speed of 
learning, especially for moderate-sized networks. 
This algorithm revealed to be the best one in the test 
we conducted, both in the epochs needed for 
reaching the target error and in the quality of the 
result, measured in terms of Mean Average 
Percentage Errore (MAPE):  
 

100⋅
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ii
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where oi is the output of the network and ti is the 
target value, that is the desired value.  
Moreover, the LM algorithm is particularly suitable 
whenever a relatively small number of observations 
is available. 
Two different objective functions have been tested: 
the simple Mean Squared Error (MSE) and the MSE 
with regularization (MSEREG), as defined in the 
Matlab™ package: 
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where λ is called performance ratio (λ ∈ [0 ; 1]; if   λ  
= 1, then MSEREG ≡MSE) and wi is the i-th weight 
of the ANN.  
This function, used as the objective function of the 
learning phase, aims to reduce the weight of the 
network, forcing the network response to be 
smoother and avoiding the risk of data overfitting, 
that occurs if the ANN has memorized well the 
patterns used for the training, but shows really poor 
performances on new data  sets. 
 
 

6. RESULTS 
 

The proposed approach has been tested over a 
number of seasonal sales time series, obtained from 
various sources. 
For the sake of clarity, only the test conducted over a 
seasonal time series with trend (Figure 2) is reported. 
Tests have been conducted over an ANN with a 
hidden sigmoidal layer of a variable number of 
neurons (ranging from 5 to 10), trained with the same 
learning algorithm (the LM) but with different 
inputs: 

 
Fig. 2. Sample of the data used for the test 

 
A) with the set of pattern constituted from the 

rolling W observation of the time series; 
B) with the set of pattern including the W rolling 

observation, the local measures and the SPI.  
The results of a series of test are reported in Table 1, 
where NN_LM indicates an ANN trained with the 
patterns using the local measures and SPI, 
constructed as illustrated in section 4. 
Each network and pattern configuration has been 
tested 7 times, and Table 1 reports the mean, the 
minimum and the maximum MAPE reached both on 
training and test set. 
As could be seen, local regressions measures 
improve the response of ANNs in almost all the tests 
conducted.  
Moreover, the usage of the MSEREG function results 
in an improvement of the generalization ability of the 
network.  



 

     

Table 1 Results of the test
 Training Set Test Set   
 NN_LM NN NN_LM NN Window Size Objective 

Mean Error (%) 9,42 17,63 13,91 25,65 

Min Error (%) 6,79 8,90 10,51 16,97 

Max Error (%) 11,00 30,68 16,44 49,15 

 
 

5 

Mean Error(%) 10,83 17,46 16,69 24,34 

Min Error (%) 9,37 13,65 14,42 18,62 

Max Error (%) 15,34 21,51 24,28 31,42 

 
 

6 

Mean Error (%) 9,77 16,93 15,39 24,34 

Min Error (%) 6,25 11,95 9,79 15,14 

Max Error (%) 14,18 23,80 22,89 36,56 

 
 

7 

 
 
 
 
 
 
 
 

MSEREG 

       

Mean Error (%) 10,06 32,02 15,90 54,35 

Min Error (%) 7,88 20,87 11,76 34,73 

Max Error (%) 11,89 38,98 19,51 66,73 

 
 
 

5 

Mean Error (%) 11,51 27,76 18,34 46,82 

Min Error (%) 7,80 19,26 11,55 32,15 

Max Error (%) 20,26 42,46 33,74 72,74 

 
 
 

6 

Mean Error (%) 13,48 21,71 22,13 36,15 

Min Error (%) 8,35 11,11 13,13 17,49 

Max Error (%) 21,38 34,27 36,27 58,31 
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Figure 3 reports more clearly the differences between 
the two approaches: with the usage of local measures 
and SPI the forecast on the training set is more 
accurate.  
As stated before, ANN could approximate arbitrarily 
well almost any kind of function, given a suitable set 
of data.  
 

 
Fig. 3. Time series (dotted line) versus forecast on the  

training set 
 
Most of the problems arise when the ANN has to 
generalize its knowledge, i.e. when the ANN has to 
predict the next value of a time series on the basis of 
inputs never seen before. The usage of the MSEREG 

avoids the overfitting problem, but nothing could be 
said precisely about the performance of the network 
when tested on a set of inputs that have not been 
presented to the ANN during the training phase.  
This is the reason why a test set has also been used: 
the test set is made up by observations that have not 
been presented to the ANN during the training 
process. 
 

 
 
Fig. 4. Time series (dotted line) versus forecast on test 

set 
 



 

     

As could be seen in Figure 4, that depicts the forecast 
on the test set, the proposed model outperforms the 
normal pattern network also on the test set. 
Analysing the results of the test, the following 
evidences emerge: 

 The assumptions of the model are validated: the 
assumptions stated in section 3 has revealed to be 
reasonable; that is, in seasonal time series could 
be found a latent information that could improve 
the forecasting process. 

 The local measures are appropriate: in the 
proposed model, the mean, variance and 
regression slope are adopted. Although these 
measures seem suitable to improve the forecast, 
there could be other local measures that could be 
exploited. 

 The usage of Seasonal Period Indicator improves 
the performances: providing the information 
about the period to which the forecast will belong 
contributes to improve the performances of the 
ANN. 

 A simple network architecture works fine: 
although it is possible to use different typologies 
of ANN, the tests confirm that also a relatively 
simple feedforward neural network can show 
good performances. 

 The generalization ability of the network is 
improved: perhaps the most important result, the 
added information provided by local measures 
and SPI improves the forecasting ability on new 
data. 

 The model is robust against trend: this result 
emerges from the comparison of the result swith 
the application of de-seasonalizing methods: such 
methods, in fact, could perform well only if the 
time series is stable, while the proposed method 
works fine also in presence of trend (as in the 
example of the time series depicted in Figure 2) 

 
 

7. CONCLUSION: REMARKS  
AND FURTHER EXTENSIONS 

 
In this work, a novel approach to the usage of ANN 
for forecasting has been proposed. Instead of focusing 
the attention on the characteristics of the ANN, we 
have proposed a model which aims to better exploit 
the information embedded into the historical data. 
The results prove that the usage of so called local 
measures (like mean, variance and slope regression) 
could improve significantly the performance of an 
ANN. Moreover, the introduction of the Seasonal 
Period Index (SPI) contributes to the effectiveness of 
the model. 
In this work, only a part of the possible measures and 
pattern configuration has been examined.  
In order to generalize the results, some of the most 
challenging extensions of the present work could be 
the following: 

 the identification of the suitable structure of the 
ANN (in particular, the number of the neurons of 
the hidden layer) by using some correlation 

measures of the characteristics of the time series 
itself, in order to reduce the size of the network 
and the training epochs; 

 although the feedforward network with LM 
algorithm performs well, could be interesting to 
extend the analysis to other network 
architectures, such as the Generalized Regression 
Neural Networks (GRNN) often used for function 
approximation; 

 another interesting topic is the definition of the 
extension of the window W to consider in the 
transformation of the time series into input 
pattern. This parameter could be linked, for 
example, to the seasonality of the time series or to 
other characteristics; 

 finally, the proposed method could be extended 
to other non-seasonal time series, that could 
represent one of the most attractive fields of 
future research. 
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