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Abstract: A new approach for modelling the dynamics of gene expression from time
series microarray data is presented. A modelling method based on a continuous rep-
resentation of Boolean functions in the form of Zhegalkin Polynomials is proposed.
Structural information known from theoretical biology like the canalizing property
can be included as well as continuous measurements of gene expression levels. As
an example, its applicability to yeast data is demonstrated. The complexity of
the problem requires efficient methods and tools. The discrete set of all Canalizing
Boolean models consistent with the measurements is large and grows exponentially
as the connectivity degree of each gene increases. This set can be defined in terms
of the Zhegalkin Polynomial coefficients. Moreover, this paper gives two theorems
on structural properties of Canalizing Zhegalkin Polynomials. An algorithm based
upon them shows how these results can be used for identifying Canalizing Boolean
functions. Copyright c©2005 IFAC
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1. INTRODUCTION

A current challenge in Systems Biology is to un-
derstand and unveil the gene expression mecha-
nism in cells. Genes encode proteins which in turn
regulate genes, (P.D’haeseleer, 2000). The activi-
ties of genes or gene expression levels are further
controlled by a number of elements present in the
cell e.g., receptor proteins etc. The cells are able to
recognize and respond to molecules in the extra-
cellular environment via so called signalling path-
ways, (C.Sniegoski and R.Somogyi, 1996). In or-
der to model gene expression mechanism, mRNA
levels (which determine the level of expression of
genes) have been chosen as a level of abstraction
out of several levels in signalling pathways.

Microarray technology has made it possible to
measure mRNA levels on a large scale as well as
in sequence resulting in timed expression level sig-
nals. With the availability of such measurements,
understanding and modelling of gene expression
dynamics is currently an aim of research as it can
help to control many deadly diseases including
cancer etc.

This paper discusses one new approach in this
field based on Zhegalkin Polynomials, (Faisal et
al., 2004a), used to model gene dynamics using
gene expression data time series. The main prob-
lem in modelling is that biological measurements
- as many as they may get - only cover a small
part of the complexity of the whole system.



This paper is organized as follows: In Section 2, a
short review of different approaches to modelling
gene dynamics is given. Moreover it also poses
the gene dynamics identification problem for-
mally. Section 3 discusses a new modelling method
briefly and illustrates its applicability through an
example from yeast time series data in Section 4.
In Section 5, two important theorems are given
that form a first step towards the development of
more efficient algorithms in order to handle the
complexity of the modelling problem in a better
way. The applicability of these results is shown by
an algorithm. The paper closes with conclusions
and outlook.

2. MODELLING APPROACHES

It was observed by Kauffman that genetic systems
share many characteristics with Boolean networks
such as periodicity and have a global complex
behavior, (S.A.Kauffman, 1969) and (Kauffman,
1993). The use of Boolean logic was therefore
proposed for understanding the complex genetic
interactions as well as to reduce the genetic system
to its principle features. This Boolean idealization
of genetic networks was further developed by
(T.Akutsu et al., 1998) and (T.Akutsu et al.,
1999) and (S.Fuhrman et al., 1998), where a gene
assumes one of two states either ”on” (1) or ”off”
(0) and the state of a gene is determined by a
Boolean function of the states of other genes. As
the system evolves from one time point to another,
the pattern of currently expressed genes is used
as an input to a Boolean rule which determines
which genes will be ”on” at the next time point.

All microarray data in time series for an organism
can formally be represented by a set

X = {(x(0), . . . ,x(T )) | x(k) ∈ Rn } (1)

of sequences of n measured gene expression levels
xi(k) for T + 1 discrete sampling time points.

For the Boolean network approach, the continuous
data sequences have to be quantized with the help
of a step function q : Rn −→ {0, 1}n with

qi(x) =
{

0 for xi < θi

1 for xi ≥ θi
(2)

and thresholds θi such that the set (1) can be
mapped to the set

Z = {(z(0), . . . , z(T )) | z(k) = q(x(k))} (3)

that only contains sequences of Boolean n-vectors.

In order to infer Boolean networks from the above
sequence of Boolean n-vectors (S.Fuhrman et
al., 1998) and (T.Akutsu et al., 1999) devised al-
gorithms. Their algorithms REVEAL and BOOL1
respectively, perform well with the assumption
that each gene is effected by only a few (less
than four) other genes. In contrast to this, from

a biological point of view, some genes have a low
connectivity degree while others are effected by
much more than four other genes.

It is known that genes are governed by a spe-
cial kind of Boolean functions which are called
Canalizing Boolean functions (Kauffman, 1993).
A constraint of this particular kind of Boolean
functions along with that of data was used to
reduce the search space of possible Boolean func-
tions. By definition a Canalizing function is a
Boolean function fb : {0, 1}n → {0, 1} having the
property that at least one of its input variables
has one value which alone suffices to guarantee
one value of the output variable.

In general, models can be divided into classes
according to their types of signals

• qualitative / discrete / Boolean, (T.Akutsu
et al., 1999)

• quantitative / continuous, (T.Chen et al.,
1999) and (J.Dehoon et al., 2003)

or according to the handling of uncertainty

• stochastic / Bayesian, (S.Imoto et al., 2004)
and (D.K.Gifford et al., 2001))

• deterministic, (S.Fuhrman et al., 1998).

Taking the first criteria into account the actual
situation in gene dynamics modelling can be de-
scribed by Figure 1.

Figure 1. Known Modelling Paths

Many concurrent approaches are used for mod-
elling that start with continuous microarray data
(A). The first type of modelers starts by quan-
tizing the data (I) and identify (II) a discrete
model (D) that can be either deterministic (e.g.
REVEAL) or nondeterministic (e.g. BOOL1) or
stochastic (Discrete Bayesian Networks), reflect-
ing the qualitative behavior of the measured data.

In the identification step, biological constraints
(usually formulated as rules) can be included, an
example is the canalizing property of Boolean
functions that are used as models of the gene
dynamics.

The other type of modelling techniques use quan-
titative approaches which do not quantize but
filter and cluster the data (III). From the filtered



data, continuous models like differential equa-
tions are derived by means of identification tech-
niques, (N.Friedman et al., 2000). These efforts
also include continuous Bayesian network mod-
els, (S.Imoto et al., 2004), which are feasible for
only small gene networks. The resulting models
are able to describe the continuous levels of gene
expression.

Both types of approaches have drawbacks. With
the discrete approach it is not possible to model
intermediate expression levels that do occur in
reality as well as in microarray data. With quan-
titative approaches, it is not possible to define
biological constraints appropriately.

With the knowledge of structural assumptions like
the canalizing property on one hand and on the
other hand, the availability of continuous microar-
ray measurement data, the following identification
problem for structured modelling of gene dynam-
ics can be posed:

• Given: Set (1) of microarray data time series
• Find: Deterministic continuous model with

transition vector function f , such that

x(k+1) = f(x(k)) = (f1(x(k)), ..., fn(x(k)))T

which reflects not only the continuous mea-
surements but the qualitative behavior in-
duced by the quantization as well. This
model has to fulfill structural properties, es-
pecially the canalizing property.

A modelling approach has been outlined by the
authors to solve this identification problem that
is different from the known standard ways and
combines methods of different disciplines to reach
the aim, (Faisal et al., 2004b).

3. MODELLING METHOD

It can be concluded from Section 2 that any
two modelling approaches that belong to two
different classes (discrete/ continuous) are neither
compatible nor comparable. A modelling method
that nevertheless links both classes is described
briefly here.

Using appropriate thresholds, the continuous val-
ued discrete time series data of gene expression
levels can be quantized to Boolean valued discrete
time series data as given in Figure 1. The next task
is to find all Canalizing discrete models which are
consistent with the data. Therefore, contrary to
Block D in Figure 1 a set of discrete models can
be obtained rather than a unique model.

At this point the missing link between the quali-
tative and quantitative approach can be obtained
by using and adapting well known methods of
continuous representations of Boolean functions,
in particular Zhegalkin Polynomials. They consist

in general of multilinear polynomials of n variables
which have the form

fi(x) = a0 +
n∑

i=1

aixi +
n∑

j=2

j−1∑
i=1

aijxixj +

+
n∑

k=3

k−1∑
j=2

j−1∑
i=1

aijkxixjxk + ...

+ a123...nx1x2x3...xn . (4)

These multilinear polynomials have the ability to
describe both, continuous as well as discrete func-
tions. With a restriction over the range of values
that the coefficients (ai, aij , ... etc) assume, these
representations coincide with Boolean functions
at Boolean values of the variables xi but appar-
ently are continuous functions, see (Franke, 1994).
Arbitrary Boolean functions can be represented
by Zhegalkin Polynomials. On the other hand,
these representations can handle continuous val-
ues as well.

The conversion of all canalizing discrete models,
that are consistent with the measurements, into
their continuous representations yields a set of
continuous models rather than a single continuous
model as in Block E of Figure 1. In the final step,
by using a suitable discrete optimization method
in order to minimize the quadratic estimation
error

J =
T−1∑
k=0

(fi(x(k))− x(k + 1))2 (5)

for each component fi in eqn. (4), an optimal
and structured model can be obtained. As it is
a discrete optimization problem, attention has to
be paid to the search space.

Any Zhegalkin Polynomial can be defined in terms
of its coefficient vector

a = (a0, a1, a2, ..., a123...n) ∈ Ab ⊂ Z2n

. (6)

Clearly not all integer combinations of coefficients
are allowed to ensure the property that each
fi only takes Boolean values as outputs if the
input is a Boolean vector. The subset of allowed
combinations is given by Ab.

Figure 2. Coefficient sets and search space



Moreover, the Boolean functions represented by
fi have to fulfill additional properties. The canal-
izing property reduces the allowed coefficient vec-
tors to the set Ac. At a final step, the Boolean
functions have to be consistent with the quantized
measurements. Let the set of all coefficient vectors
that ensure this be denoted by Am. In Figure 2,
the important sets and their relations are illus-
trated.

Thus, the search space for the optimization of the
cost function (5) is given by

A = Ac ∩ Am , (7)

and the full structural identification problem to
derive the best coefficient vector a∗ (i.e. the
model) given by

min
a∈A

J . (8)

In order to illustrate the modelling method, a
simple example using yeast gene expression data
will been given in the next section.

4. YEAST GENE DATA MODELLING

For the sake of showing applicability of the
proposed modelling cycle, the results of the
whole modelling cycle for yeast time series data
(http://genome-www5.stanford.edu) of four genes
(HSF1, SSA1, SSA3, Y RO2), which take active
part in heat shock response in yeast, are presented
here. Linearly normalized expression levels of the
above mentioned four genes are shown in Figure 3.
It is assumed that the expression level of each gene

Figure 3. Normalized time series data of yeast

at time step k + 1 depends at least upon the ex-
pression level of all four genes at the previous time
step k. This particular example shows the result
of the modelling method for a structural model
corresponding to the gene HSF1. Following the
steps of the modelling method, using mean values
of the gene expression data as thresholds for quan-
tization, 575 Canalizing Boolean functions were
obtained out of 212 Boolean functions consistent

Figure 4. Time series model vs. measurements for
the gene HSF1

with the measurements, corresponding to gene
HSF1. Optimization of the Least Square error
yielded an optimal Zhegalkin Polynomial that can
be seen in Figure 4 in comparison to the original
data.

It can be seen that there are some discrepancies
between the model and the measured sequences,
because the example does only in reference to
four other genes causing the behavior of HSF1.
Including additional gene expression levels profiles
or increasing the number of variables of the func-
tion fi could resolve this ambiguity.

One problem to determine such models lies in the
fact that the number of Zhegalkin polynomials
is very large for a higher degree of connectivity.
Then, separation of canalizing from non canalizing
polynomials is not trivial. In the next Section,
some conditions are given that distinguish coeffi-
cient vectors of canalizing form coefficient vectors
of non canalizing Zhegalkin polynomials.

5. STRUCTURE OF CANALIZING
ZHEGALKIN POLYNOMIALS

Given a Zhegalkin Polynomial representation of
a Boolean function, the following theorems give
necessary and sufficient conditions to test if it
belongs to the canalizing or the noncanalizing
class, (Faisal et al., 2005).

Theorem 1

A Zhegalkin Polynomial representing a Boolean
function with n inputs is canalizing with the canal-
izing variable xi, i ∈ {1, . . . , n} and the canalizing
value 0 if and only if all following conditions hold:

aj = 0 j 6= i ,

ajk = 0 j, k 6= i ,

ajkl = 0 j, k, l 6= i ,

...



a12...(i−1)(i+1)...n = 0 . (9)

A Zhegalkin Polynomial representing a Boolean
function with n inputs is canalizing with the canal-
izing variable xi, i ∈ {1, . . . , n} and the canalizing
value 1 if and only if all following conditions hold:

aj + aij = 0 j 6= i ,

ajk + aijk = 0 j, k 6= i ,

ajkl + aijkl = 0 j, k, l 6= i ,

...

a12...(i−1)(i+1)...n + a12...n = 0 . (10)

Example

The use of the above theorem can be shown
by considering a Boolean function with 3 input
variables and testing their canalizing property.
Consider a Boolean function

x1 XOR (x2 XOR x3).

The corresponding Zhegalkin Polynomials for this
function is

x1 + x2 + x3 − 2x1x2 − 2x1x3 − 2x2x3 + 4x1x2x3.

As in this function a1 6= 0, a2 6= 0 and a3 6= 0,
the function cannot be canalizing to any variable
with respect to the value 0. Since a12 + a123 6= 0,
a13 + a123 6= 0 and a23 + a123 6= 0, the function
cannot be canalizing to any variable with respect
to the value 1. So this function is noncanalizing.

The following result describes another structural
property of the Canalizing Zhegalkin Polynomials.
As before only the theorem is given and the proof
is omitted.

Theorem 2

If f(x) is a Zhegalkin Polynomial representation
of an arbitrary Canalizing Boolean function with
canalizing variable xi then

aij ∈ {−1, 0, 1} ∀j = 1, ..., n

aijk ∈ {−2,−1, 0, 1, 2} ∀j, k = 1, ..., n

...

a1...i...n ∈ {−2n−2, ...− 1, 0, 1, ..., 2n−2}.

Example

Let a Zhegalkin Polynomial representation of a
Boolean function of two variables be given by

f2(x1, x2) = 1− x1 − x2 + 2x1x2

The range of values that a12 can assume to be a
Zhegalkin Polynomial is given by

a12 ∈ {−2,−1, 0, 1, 2}.

Since a12 = 2 in the above polynomial, and
Theorem 2 doesn’t allow a Canalizing Zhegalkin
Polynomial to have coefficient a12 with values in
the set {−2, 2} therefore f2 is noncanalizing.

Based on the Theorems, an algorithm to iden-
tify Canalizing Zhegalkin Polynomials will be pre-
sented next.

Algorithm

The following algorithm is formulated by using the
two theorems. It checks whether a given Zhegalkin
Polynomial represents a Canalizing Boolean func-
tion.

Let f denotes a Zhegalkin Polynomial of n
variables as given in eqn. (4) and let

S = {−2n−1, ...,−2n−2−1, 2n−2+1, ..., 2n−1} .

I. Check for non canalizing property.
If a1...n ∈ S is true
⇒ f is not canalizing. STOP

else
NEXT.

II. Check variables xk for canalizing value 0.
For k = 1 to n do

Check conditions (9) for i = k.
If for any k all conditions are true
⇒ f is canalizing. STOP.

end do

III. Check variables xk for canalizing value 1.
For k = 1 to n do

Check conditions (10) for i = k.
If for any k all conditions are true
⇒ f is canalizing. STOP.

end do

IV. f is not canalizing.

Remarks

It is clear that for an implementation of the
above algorithm, redundancy should be avoided
and results of tested equations have to be stored
in a efficient manner for reuse.

Moreover, to solve problem (8), it is necessary to
represent the elements of the search space A in
a convenient way. Figure 5 shows that it makes
sense not to use truth table representations at all,
because the effort of transformation can be omit-
ted. But because of the simplicity of the canalizing
test in terms of the coefficients of the Zhegalkin
polynomials, it may even be more efficient to



transform the truth table first and then check the
property than to check it directly.

Figure 5. Canalizing Zhegalkin Polynomials

The truth table representing a Boolean function
requires n(2n−2) conditions to check in the worst
case, to find out if the given Boolean function
is Canalizing. Whereas, by using the proposed
algorithm 2n−1 functions will be identified as
noncanalizing just by checking a single condition
(the first step of the algorithm). However for the
rest of the noncanalizing functions, it still needs
up to n(2n − 2) conditions to check.

6. CONCLUSIONS

A new modelling method for the dynamics of gene
expression is given. This method inherits a poly-
nomial model for the expression levels that can be
interpreted both, qualitatively and quantitatively.
The model can be identified by given timed se-
quences of microarray data and at the same time,
it can be ensured that discrete biological rules like
the canalizing property are not violated.

To do this, an underlying discrete optimization
problem has to be solved that suffers from combi-
natorial complexity. The representation of sets of
these models is possible by means of their coeffi-
cients. Two theorems are derived that give insight
into the structure of allowed combinations of co-
efficients if the canalizing property is demanded.
The next step will be to improve the algorithm
for efficient implementations of identification rou-
tines.
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