
QUASI-RANDOM, MANOEUVRE-BASED
MOTION PLANNING ALGORITHM FOR

AUTONOMOUS UNDERWATER VEHICLES

Chiew Seon Tan, 1 Robert Sutton, John Chudley
Marine and Industrial Dynamics Analysis Group

School of Engineering
The University of Plymouth,

PL4 8AA, UK

Abstract: This paper presents an approach using a hybrid modelling technique
known as Manoeuvre Automaton (MA) to capture the key dynamics of a nonlinear
autonomous underwater vehicle (AUV) in such a way that high-level tasks such
as optimal motion planning can be computationally simplified, while still allowing
it to perform complicated manoeuvres when the situation arises. With respect
to motion planning in an obstacle filled environment, an incremental stochastic
technique derived from the Rapid-exploring Random Tree (RRT) algorithm is
applied. This paper proposes a multiple nested node version of RRT and also
addresses the case of a time varying final state. Simulation results as presented,
using a 3 degree-of-freedom (DOF) nonlinear AUV model in order to prove the
viability of the concept. Copyright c© 2005 IFAC
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1. INTRODUCTION

In the last few years, AUVs are frequently be-
ing employed for sea bottom exploration, mine-
hunting, scientific data gathering and reconnais-
sance missions. The requirement for the successful
accomplishment of all the above tasks has mani-
fested itself into an urgent demand for an increase
in AUV autonomy. In fact, one area that needs
particular attention is collision avoidance. Due to
its obvious complexity and the limited length, this
paper shall concentrate on addressing only the
motion planning issues of an AUV.

Lately, there has been a sudden paradigm shift
by the scientific communities from AUV deep sea
exploration missions to deployment in littoral wa-
ters. The littoral zone is important for scientific
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research since it houses the bulk of ocean based or-
ganisms. Likewise, the navies have demonstrated
a keen interest in exploiting AUV technology as a
potential force multiplier to complement their am-
phibious power projection plans. Obviously, one
can envisage numerous important military mis-
sions such as port infiltration and mine-hunting,
where it is crucial for an AUV to be able to
navigate in an unknown and hostile terrain.

Several inherent characteristics of an AUV par-
ticularly its highly nonlinear coupled dynamics,
underactuated, non-driftless, non-minimum phase
behaviour and its subjection to unpredictable
exogenous disturbances makes controller design
nontrivial. The last attribute is especially rele-
vant for small, lightweight AUVs such as Remus
(Prestero, 2001). Typically, a few linearised mod-
els are utilised for the AUV controller design, thus
artificial operational constraints must be imposed
to avoid violation of the linearity assumption.
Consequently, this introduces additional restric-



tion to the system performance envelope. Alterna-
tively, a more preferable approach is to “quantise”
the AUV dynamics, transforming a continuous
dynamic model governed by complex nonlinear
differential equations into a hybrid model which
not only possesses higher levels of abstraction but
is also more beneficial computationally. With an
added advantage, this approach also conveniently
permits the incorporation of complex and aggres-
sive manoeuvres into the AUV. This process is
achieved via the Manoeuvre Automaton (MA)
representation.

Most path planning techniques introduced to date
are based firmly on deterministic methods and
graph searches. Unfortunately, due to their sample
space discretisation issues, the generated trajec-
tories need extra smoothing and interpolation.
Notwithstanding this, the system dynamics are
also neglected to avoid state-explosion effect. Col-
lectively, these factors ensue a very conservative
system performance. Randomisation methods are
becoming popular as they are inherently more
robust to the state explosion effect. One version is
the Rapid-exploring Random Tree (RRT), which
this paper extends and integrates with the MA.

This paper begins with a brief outline of the MA
concept and its merits in Section 2. A brief theo-
retical foundation on how MA can be extended to
solve optimal motion planning problem for cases
without obstacles is provided. Section 3 discusses
the AUV dynamic model and the generation of
motion primitives. Implicitly, the latter process is
critical as it will dictate the achievable behaviour
of the AUV, per se. Section 4 is devoted to the
integration of the RRT algorithm with the MA
for the motion planning problem in the case of an
obstacle filled environment. Discussion of the sim-
ulation results are contained in Section 5. Finally,
Section 6 contains concluding remarks and future
work.

2. THE MANOEUVRE AUTOMATON (MA)

The MA, a form of finite state machine, is pro-
posed by Frazzoli et al. (1999) as a unified frame-
work for formalising the control of nonlinear sys-
tems with symmetries. In essence, the main idea
is to generate a complete trajectory via sequential
combination of the copies of motion primitives
from a library set. These motion primitives are
extracted from the vehicle in an open-loop mode.

The approach relies primarily on two different
types of motion primitives: trim trajectories and
manoeuvres. Trim trajectories (relative equilibria)
correspond to steady state behaviour in situation
when the velocities in body-axes and inputs are
constants. On the other hand, manoeuvres can

be seen as finite time motion primitives that
interconnect two trim trajectories together.

Similar to a differential or difference equation, a
MA transcription, describes a dynamic system,
differing only in that it has hybrid elements in
both its control inputs (τ, p), and state vector
(x, q). MA evolves in so-called “dense time” by ei-
ther continuous flows or discrete transitions. Con-
sequently, at each particular moment, the system
is constrained to be either in a trim condition q
or performing a manoeuvre p. Thus the system
behaviour can also be explicitly formulated as
below.

• An MA system H starting at state vector
(xi, qi) in trim trajectories, evolve according
to fq(·) as determined by the length of the
τk, which can be infinite. Where fq(·) is
the governing differential equation at the
specific discrete state qk. The hybrid state
then evolves as:

xk+1 = xk + τkẋq (1)
qk+1 = qk (2)
tk+1 = tk + τk (3)

where ẋq is the time rate of change of the
vehicle’s continuous state variables and k is
the “stage” number.

• In the case of performing a manoeuvre p,
the vehicle leaves the trim trajectory q1 for
a finite length of time before settling to
the trim trajectory q2. Mathematically, the
manoeuvre is initiated by the control action
p, which is discrete, and is described by a
fixed duration ∆tp and displacement ∆xp in
the continuous state space, as illustrated in
Fig. 1 for a SE(2) case. In reality, the control
history of the continuous state-space system
is implicitly encoded in the control action
p. As such, when manoeuvering, the hybrid
state evolves as:

xk+1 = xk + ∆xp (4)
qk+1 = q2 (5)
tk+1 = tk + ∆tp (6)

Although, the hybrid control input at instant k
can be described by a vector (τ, p)k, however only
one input, either τ or p can be active at any
moment.

By having the AUV continuous behaviour en-
coded as a discrete state q, its configuration can
be described by an element of the Lie group G of
rigid motions in R2 or R3, called SE(2) or SE(3),
respectively. In planar situations, where the al-
titude is constant, SE(2) will be employed. The
reason for restricting the formulation to SE(2) has
real practical significance, and will be elaborated



in Section 3. The group SE(2) can be expressed
using the homogenous coordinates as follows:

g =




cos ψ − sin ψ x
sin ψ cosψ y

0 0 1


 (7)

The Lie algebra elements ξ ∈ SE(2) are repre-
sented as matrices in R3×3 and for a special case
of ω = 0, one yields Equation 8 to describe the
configuration change after τ length of time in trim
trajectory. The subscript k is omitted for clarity.

eξτ =




1 0 υxτ
0 1 υyτ
0 0 1


 (8)

One can also describe the configuration change
resulted of a manoeuvre p using Equation 7. As a
result of applying the MA representation, one can
now mathematically describe the system configu-
ration by concatenating these motion primitives
as expressed below:

gf = g0

[
N∏

k=1

e(ξk,τk)gk

]
eξk+1τk+1 (9)

Where g0 and gf is the initial and final configura-
tion. e(ξk,τk) and gk represent the transformation
of applying the k-th trim trajectory and the k-th
manoeuvre, respectively.

The MA representation allows one to express eas-
ily the optimal motion planning problem. This
is true, for certain cost functions that share the
symmetry properties of the system, such as mini-
mum time, minimum length and minimum control
effort. For the special case of the minimum time
cost functional, one can formulate it as Equation
10.
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Fig. 1. Displacement of configuration variables
and its time duration for manoeuvre p

min
pk,τk

N∑

k=1

(∆tp(k) + τk) (10)

such that Equation 9 is satisfied and τ ≥ 0.

The above optimisation problem can be solved
using a dynamic programming (DP) technique
(Frazzoli, 2001; Schouwenaars et al., 2003). For
the unique case when ψ̇ = 0, such that when
all the trim trajectories are translations, the cost
is linear with respect to the coasting variables
τ , hence one can employ the linear programming
(LP) method instead (Frazzoli, 2002a).

3. AUV DYNAMIC MODEL AND MA
IMPLEMENTATION

In this section, the AUV model and techniques for
synthesising the motion primitives are presented.
This is done, in order to convert the continuous
system model into the MA representation. The
AUV model was supplied by QinetiQ, based on
the Autosub vehicle (Millard et al., 1998), which
has a torpedo shaped hull. Dimensionally, the
vehicle is 7 m long, and approximately 1 m in
diameter and has a nominal displacement of 3600
kgs. In this paper, the model is restricted to only
latitude dynamics and yaw control limited to the
locked bow rudders. The vehicle has a maximum
rudder deflection of ±25.2◦ and a rudder rate limit
of 9.9◦/s. Including these two components into the
model resulted in a nonlinear system. The pitch
and roll effects are neglected. The main reason for
concentrating only on a latitude model is due to
the limitation imposed by a forward looking sonar.
To elaborate, most commercial forward looking
sonars are only capable of providing a projection
of 2D image of the terrain, hence determination of
object depth is extremely difficult. Accordingly, to
mitigate any risk of collision, the AUV must avoid
all the perceived obstacles.

Figure 2 shows a possible MA representation of
the Autosub dynamics. Both 2 m/s and 5 m/s
of cruising speeds are illustrated. Unfortunately,
the above model lacks propulsion dynamics, here
the forward velocity was held constant by an
Proportional-Integral (PI) controller during the
experiments. Therefore, this constrains the follow-
ing simulations to only one speed regime which
was selected to be 5 m/s. Normally, for the pur-
pose of generating trim trajectories, a velocity
augmentation loop must first be designed into
the system. Nonetheless, this process is redundant
since the AUV is already assumed to be cruising at
a constant velocity. The Autosub model is discre-
tised using the zero-hold method and a sampling
frequency set to 10 Hz.Referring to Figure 2 again,
it shows clearly a library that constitutes manoeu-
vres of 15◦, 30◦, 60◦, 120◦. Since the manoeuvres



are symmetry, the opposite direction manoeuvres
are not shown. The manoeuvres should encompass
the important performance envelope of the AUV,
and their generation can be attained via a human
operator or a controller input. The latter method
is selected for the following study. A Proportional-
Derivative (PD) autopilot is designed so that one
can extract the manoeuvres by input step inputs.
Obviously, a more advanced controller can also
be applied to extract better performance out of
the AUV. The input and the state histories are
recorded. Table 1 shows a few manoeuvres with
their associated execution time duration and dis-
placements.

�����
���

°=∆ 30ψ
°=∆ 60ψ

°=∆ 120ψ

°=∆ 15ψ

°−=∆ 30ψ

°−=∆ 60ψ
°−=∆ 120ψ

°−=∆ 15ψ

�	
�
�
�
�

�����
���

°=∆ 30ψ
°=∆ 60ψ

°=∆ 120ψ

°=∆ 15ψ

°−=∆ 30ψ

°−=∆ 60ψ
°−=∆ 120ψ

°−=∆ 15ψ

����� �
��

����

Fig. 2. AUV dynamics in MA representation

Table 1. Manoeuvre Library, q = 5 m/s

P(index) ∆T (s) ∆x(m) ∆y(m) ∆ψ(◦)
P15 5.5 27.2 3.3 15
p30 8.2 38.5 12.2 30
p60 6.6 26.8 15.8 60
p120 23 -8.4 93.4 120

4. QUASI RANDOM RAPID-EXPLORING
RANDOM TREE

The approximate cell-decomposition methods such
as A∗, dynamic programming and breath-first
search are highly susceptible to the curse of di-
mensionality. Therefore, it is reasonable for one
to concentrate on randomised algorithms. These
algorithms do not have the completeness 2 and
optimality properties of the previous algorithms.
However, their robustness to the “curse of dimen-
sionality” tends to make them preferable in practi-
cal and real-time applications. One version of this
algorithm is the RRT (Lavalle, 1998). It is a form

2 A property where the algorithm will return a solution if
such a solution exists

of incremental stochastic search technique that
has been devised to search efficiently nonconvex
high-dimensional state space.

4.1 Quasi Random Generator

Here, the quasi random (sub-random) generator
based on the Halton sequence (Halton, 1960) is
utilised instead of a pseudo random generator.
Theoretically, the former generator possess cer-
tain desirable properties such as low discrepancy
and improved uniformity over the sampling space.
The generation of an element of a one-dimensional
Halton sequence within the interval [0, 1] is calcu-
lated using Equation 11 and Equation 12. Differ-
ent prime numbers starting from the smallest are
used for the multi-dimensional sampling case.

xi =
∞∑

k=0

nk,ip
−k−1 (11)

with i > 0,p = 2 and nk,i determined by the
following equation:

i =
∞∑

k=0

nk,ip
k; 0 ≤ nk,i ≤ p; nk,i ∈ N (12)

4.2 Motion Planning Algorithm

Frazzoli (2002b) advocates enhancing the RRT al-
gorithm by fusing it with the MA to solve motion
planning problem with obstacles. The algorithm
assumes that one has an embedded planner, that
can plan an optimal trajectory in an obstacle
free environment between two arbitrary states
(Equation 9). The approach in this paper is that
of multiple nested nodes. Since every state in a
trim trajectory can be considered as a starting
point of a manoeuvre. This algorithm generates
child nodes at every connection point between
a trim trajectory and manoeuvre. This improves
the RRT branching capability, thus increasing the
probability of finding a solution. A brief explana-
tion of the the algorithm with reference to figure
3 is outlined below:

(1) Generate a subgoal (R1) using the quasi-
random generator and attempt to connect to
it using the embedded planner based on a
minimum time criterion.

(2) If there is no collision, then generate an
edge with new vertices at all interconnecting
points of trim trajectories and manoeuvres.
For all the new vertices, attempt to connect
directly to the goal (greedy algorithm).

(3) If failed, generate another random subgoal
(R2). Sort the shortest time trajectories to
R2 from all vertices in an ascending order
and attempt to connect to it. Apply this to
only the first few near-optimal trajectories to
avoid vertices saturation.



(4) The whole process is repeated until a feasible
trajectory to the final state is found, maxi-
mum vertices size or time limit is reached.
Figure 3 shows that vertex (nc1) has con-
nected successfully to the final state.

4.3 Error Mitigation

Few researchers have expressed their concern re-
garding the prescribed error generated by RRT
algorithm. Due to the discretised nature of the
inputs in the original RRT algorithm, when the
input history is applied, there will exist some
errors in the final state. Hence, Kim and Os-
trowski (2003) attempt to circumvent the problem
by introducing a subconnection process. Similarly,
Cervern et al. (2004) introduces error mitigation
scheme to reduce the error caused by the concate-
nation effects. The former approach relies on “in-
tegrating” the dynamic model using the acquired
input history to ascertain the final state. One
disadvantage, in this approach is the requirement
of an accurate dynamic model of the system. This
might not be true in practice, due to model com-
plexity, or nonexistence of a mathematical model.
In fact, this error can be considered as a form
of disturbance, and a robust controller can be
designed to track the nominal trajectory instead.
The design of the tracking controller is non-trivial
due to the multi-input-multi output (MIMO) and
underactuated behaviour of the AUV, as such it
will be addressed in the near future.

4.4 Time-varying final condition

The case of a time-varying final condition is par-
ticularly interesting. This problem is commonly
met when an AUV is conducting an interception
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Fig. 3. Simplified illustration of the RRT Algo-
rithm operation

mission such as docking with a moving mother
submarine (Tan et al., 2003). The problem of
addressing the time-varying final condition using
RRT was first pursued by Cervern et al. (2004).
His approach is based on embedding time vari-
able into the system state vector. Evidently, the
immediate effect is the increase in the state vector
dimension. A simpler solution proposed here is to
adopt an iterative subroutine commonly known
as the “false-position” method. Fundamentally,
assuming that the target is moving at a constant
velocity, the concept is to use a predict-correct
process to converge within a tolerance of the final
state. Nonetheless, there is no guarantee of conver-
gence, thus an upper bound to the iteration count
is needed to terminate the loop as a contingency.

5. SIMULATION RESULTS AND
DISCUSSIONS

The algorithm is implemented in MATLAB with
the GNU Linear Programming Kit ver. 4.4 (GLPK) 3

in an 2.1 GHz Pentium IV machine, with 512
MB of RAM and running Windows XP. The en-
vironment, based on the North-East-Down coor-
dinate, is set to 300 × 300m in dimension. The
simulations assume an ideal case where a priori
information of the environment is provided and
there is no external disturbance from the environ-
ment. The simulations are run with 200 maximum
nodes, 300 maximum iterations, and a 2 seconds
time constraint, terminating when either criterion
is reached or if a solution is found.

Pertaining to simulation 1, the AUV initial state
is set to [1 1 0.1], while the final state is [170 145 κ]
where κ denotes an unconstrained variable. Here
the individual variables are [x y ψ], displacements
in meters and heading in radians, the goal toler-
ance is defined as a 7m radius. Figure 4 illustrates
one of the trajectories found by the algorithm.
The dotted lines are candidate trajectories where
the continuous line is the feasible trajectory. The
triangles symbolise the AUV, enlarged twice for
reason of clarity. The numeric values denote the
vertices. For simulation 2 (Figure 5), the final
state is set to [150 70 2.2] and moving at 2 m/s,
simulating a moving submarine. Again, a trajec-
tory is found as depicted in Figure 5.

Due to the probabilistic nature of the algorithm,
a sample of 100 simulations are run to compile the
statistics (Table 2). From the median statistic, it is
observed that the majority of the solutions are less
than a fraction of a second for both simulations.
The failure rate of simulation 2 is higher due to
the time varying state issue. Moreover, in certain

3 Obtained from http://www.gnu.org /software/ glpk/
glpk.html



cases, the AUV will intercept the target in a head
on position instead of a tail-chase fashion. This
is prevented by wrapping the heading angle and
constraining the final state heading.

6. CONCLUDING REMARKS

The primary objective of this paper is to verify
the feasibility of employing the MA representation
and the RRT algorithm to an AUV to solve the
motion planning problem. The simulation results
obtained are very encouraging, although addi-
tional detail studies are warranted. Its very short
computational time makes it an ideal algorithm
for real-time applications. Additionally, a simpler
algorithm for solving time-varying final state has
been proposed. As aforementioned, the algorithm
is intrinsically a feedforward controller, therefore

Table 2. Statistics from 100 samples run

Statistics Sim. 1 Sim. 2
Average time taken,s 0.41 1.22
Median,s 0.27 0.56
Standard deviation,s 0.25 0.41
Success rate 88/100 68/100
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Fig. 4. Simulation 1. Environment with static
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a robust low-level feedback controller will be de-
signed in the near future to track the prescribed
trajectory.
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