
OPTIMAL CONTROL FOR SWITCHED
DISTRIBUTED PARAMETER SYSTEMS WITH

APPLICATION TO THE GUIDANCE OF A
MOVING ACTUATOR

Orest V. Iftime ∗,1Michael A. Demetriou ∗∗

∗Delft Center for Systems and Control, Mekelweg 2, 2628
CD, Delft, The Netherlands, o.v.iftime@dcsc.tudelft.nl
∗∗Dept of Mech. Eng., Worcester Polytechnic Institute,
Worcester, MA 01609-2280, USA, mdemetri@wpi.edu

Abstract: The present study considers a hybrid controller scheme for the optimal
switching of a moving (or scanning) actuator (MA) for a class of distributed
parameter systems (DPS). The proposed hybrid controller switches both the
location and control signal of the actuator at the beginning of a time interval
and remains unchanged over the duration of the time-interval. As time progresses,
the above policy is repeated over a sequence of “time windows”, thus generating
an algorithmic procedure which results in the actuator/controller switching policy.
Guiding the MA at certain a priori selected actuator positions at different time-
intervals is made possible by solving a double optimization problem. The decision
method for actuator switching utilizes a finite-horizon LQR optimal control
policy and, using optimality criteria, the associated optimal control problem is
solved backwards-in-time for several time subintervals. A numerical example with
simulation results is presented. Copyright c©2005 IFAC.
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1. INTRODUCTION

We consider a class of hybrid DPS in which
both the location of the actuating device and the
associated control signal are allowed to switch
at different time intervals. The motivation for
this actuator/controller switching stems from the
desire to enhance performance. As was already
observed in thermal manufacturing applications
(Demetriou et al., 2003) a significant improvement
is observed when an actuating device is allowed
to move at preselected positions in the spatial
domain. Unlike the finite dimensional case of hy-
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brid systems where only the controller signals are
switched (Borrelli, 2003; Liberzon, 2003; Savkin
and Evans, 2002), the case of distributed parame-
ter systems incorporates information on the spa-
tial domain and thus allows also for the switching
of the actuator positions.

The problem under study is formulated in the next
section. Results on the finite horizon optimal con-
trol are presented in Section 3 and the algorithm
for the optimal actuator switching policy for a
family of switched distributed parameter systems
is provided. In Section 4, a switching policy of
MA on infinite-time interval is considered. Using
a finite number of switches or global stability, an
optimal and an ε-optimal algorithm, respectively,



is proposed. An example of a heat equation system
described by a parabolic partial differential equa-
tion along with its numerical results are presented
in Section 5. Conclusions follow in Section 6.

2. PROBLEM FORMULATION

Let (Sp)p∈P , for some index set P, be the family
of linear continuous-time systems which, for each
fixed p ∈ P, is given by a state linear system
(A,Bp, Cp) of the form

(Sp)

{
d

dt
z(t) = Az(t) + Bpu(t),

y(t) = Cpz(t)
(1)

where the operator A is the infinitesimal generator
of a strongly continuous semigroup T (t) on a
Hilbert space Z, and Bp and Cp are bounded
linear operators from a Hilbert space U to Z,
and from Z to a Hilbert space Y , respectively.
To (Sp)p∈P is associated the set of all possible
switches between the given systems

Σ = {σ | σ : [t0,∞) → P, piecewise constant}.
The family of switched systems ((Sp)p∈P , Σ) taken
under consideration in this paper are the hybrid
dynamical systems consisting of the family of
continuous-time systems (Sp)p∈P together with all
switching rules σ ∈ Σ, all initial states z(t0) =
z0 ∈ Z, and all inputs u ∈ L2([t0,∞); U). Denote
by t0 < t1 < t2 < ... < tn < ... the countable set
of switching time instants, namely the discontinu-
ities of the switching functions σ. For simplicity,
we consider here only equidistant switches, i.e., for
a given ∆t, consider ti := t0 + i∆t, i ∈ N.

Suppose that a switching function σ, an initial
condition z0 and an input u are given. Then, on
each interval {[ti, ti+1)}i∈N, the state zσ(t) of the
switched system ((Sp)p∈P , σ) is the mild solution
of the Cauchy problem (1) (see (Curtain and
Zwart, 1995, Chapter 3)), i.e. for ti ≤ t ≤ ti+1

zσ(t) = T (t)zσ(ti) +

t∫

ti

T (t− s)Bσ(ti)u(s)ds. (2)

Then, the output trajectory on each interval
{[ti, ti+1)}i∈N is

yσ(t) = Cσ(ti)zσ(t). (3)

The initial conditions at the beginning of each in-
terval are {zσ(ti)}n−1

i=0 , and they are considered to
be the end values of the solution on the preceding
time-interval. Consequently, the mild solution of
any of the switched system ((Sp)p∈P , σ) is contin-
uous. With the trajectories (2),(3) we associate
the following cost functional

Jσ(z0; u, t0, tf ) = 〈zσ(tf ),Mzσ(tf )〉

+

tf∫

t0

(
〈yσ(s), yσ(s)〉+ 〈u(s), Ru(s)〉

)
ds,

(4)

where z0 ∈ Z is the initial condition, u ∈
L2([t0, tf ];U) is the input trajectory, M is a self-
adjoint, nonnegative, bounded operator on Z and
R is a coercive, bounded operator on U . The final
time can be finite, tf < ∞, or infinite, tf = ∞.

The control objective is to minimize the cost
(4) over all possible trajectories (2),(3) of the
switched systems from ((Sp)p∈P , Σ). One may
then formulate the following double optimization
problem.

Problem 1. Given a family of switched systems
((Sp)p∈P ,Σ), and an initial condition z0 ∈ Z,
find an optimal control uopt ∈ L2([t0, tf ]; U) and
an optimal switching function σopt ∈ Σ that
minimize the cost functional (4) over all possible
trajectories (2),(3). In other words, find

Jopt = min
σ∈Σ, u∈L2([t0,tf ],U)

Jσ(z0; u). (5)

Motivated by engineering applications and in par-
ticular by thermal manufacturing (Demetriou et
al., 2003), we introduce additional assumptions.
In thermal manufacturing applications, the ac-
tuator device (heat source) will most likely be
mounted on a robotic arm, and will not transverse
large distances in infinitesimal time intervals. In
addition, due to computational restrictions, on-
line optimization at every time instance is not
feasible. Instead, it is assumed that the mov-
ing actuator can reside at a given location for
a time interval of small duration (dwell time)
whose length is dictated by hardware limitations
and bandwidth, and closed loop system stability
bounds. Thus, we will look at the optimal problem
at each of the subintervals. As mentioned earlier,
we will consider time intervals of constant length.

Assumption 2. (Finite candidate locations). There
are only a finite number m ≥ 2 of admissible lo-
cations for the moving actuator. Denote by Pm =
{p1, p2, . . . , pm} ⊂ P the corresponding index set,
and by Σm the set of switching functions σ.

Assumption 3. (Zero transverse time). The time
required by the actuating device to transverse
from location p1 ∈ P at the end of the time
interval [ti, ti +∆t] to location p2 ∈ P for the sub-
sequent interval [ti +∆t, ti +2∆t] is negligible and
may be assumed to be zero, i.e. one has inertia-
less moving source. Alternatively, one may assume
that there are many actuators available, and only
one is to be activated and stay active throughout a
given time interval. Thus the actuator at location



p1 ∈ P will be active during the time interval
[ti, ti + ∆t] and the actuator at location p2 ∈ P
will be activated for the subsequent interval [ti +
∆t, ti + 2∆t] with no additional time required for
activating and disengaging p2 and p1, respectively.

Assumption 4. (Minimum residence time). The
choice of the residence time ∆t is chosen to be
larger than the minimum dwell time τd (Liberzon,
2003), allowable for stability under switching.

Continuing, one may now formulate the following
two optimization problems (the final time can be
finite, tf < ∞, or infinite, tf = ∞).

Problem 5. Given a family of switched systems
((Sp)p∈Pm , Σm) which satisfies Assumptions 3
and 4, and an initial condition z0 ∈ Z, find an
optimal control uopt ∈ L2([t0, tf ];U) and an opti-
mal switching function σopt ∈ Σm that minimize
the cost functional Jσ(z0; u, t0, tf ) over all possible
trajectories (2),(3), i.e. solve

Jm
opt(z0; t0, tf ) = min

σ∈Σm, u∈L2
Jm

σ (z0; u, t0, tf ). (6)

Problem 5 has two degrees of freedom. We seek an
optimal control from a class of available controls.
Please note that Problem 5 can be found in the
general classification provided in (Butkovskiy and
Pustyl’Nikov, 1987, Figure 1.4, page 45).

The above formulations of the optimization prob-
lems for switched systems are more general than
one needs for providing methodologies for optimal
and suboptimal efficient switching of a moving
actuator for distributed parameter systems. The
generality comes from the fact that, for the set of
systems (1), we have not imposed the restriction
that the bounded operators (Bp)p∈P model point
actuators and sensors. Usually, a point actuator
and/or sensor is modelled as a delta distribution
in the point where the actuator is applied, which
does not “always“ represent a bounded operator.
This is one way to view the problem and provide
an optimal trajectory for the actuator position, as
treated in (Butkovskiy and Pustyl’Nikov, 1987).

3. OPTIMAL SWITCHING POLICY OF MA
ON FINITE HORIZON

In this section we consider the final time tf < ∞.
Assume that ((Sp)p∈Pm , Σm) satisfies Assump-
tions 3 and 4 and an initial condition z0 ∈ Z
is given. An algorithm for solving the formulated
optimal control problem (Problem 5) on a finite-
time interval [t0, tf ] is provided. We must first
consider a set of m fixed values (locations) Pm =
{p1, p2, ..., pm} in which the switching function

may take values (the MA may reside at these
locations during certain time intervals).

We briefly introduce the notations and summarize
well-known results from optimal control without
switching, i.e. σ(t) = p for all t ≥ 0, (Curtain
and Zwart, 1995). For each fixed actuator location
p ∈ Pm, the optimal control signal that minimizes
a finite horizon cost of the type (4) on the finite
time interval [ta, tb] over all trajectories of the
system Sp, z0 = z(ta), is given by

uopt
p (t; z0, ta, tb) = Kp(t)zopt

p (t; z0, ta, tb), (7)

with Kp(t) , −R−1B∗
pΠp(t). The optimal state,

zopt
p (t; z0, ta, tb), is the mild solution of the ab-

stract evolution equation

d

dt
z(t) = (A−BpKp(t))z(t) , Acl,p(t)z(t)

z(ta) = z0.

(8)

The self-adjoint nonnegative operator Πp(t) ∈
L(Z) for all t ∈ [ta, tb], and satisfies the Operator
Differential Riccati Equation (ODRE)

d

dt
〈φ, Πp(t)ψ〉 = −〈φ, Πp(t)Aψ〉
−〈Aφ, Πp(t)ψ〉 − 〈Cpφ,Cpψ〉
+〈Πp(t)BpR

−1B∗
pΠp(t)φ, ψ〉, t ∈ [ta, tb],

Πp(tb) = Mp,

(9)

for φ, ψ ∈ D(A). The following relationship be-
tween the minimum of Jp(z0; ta, tb, u), defined by
(7), and Πp(ta) holds

min
u∈L2([ta,tb],U)

Jp(z0; ta, tb, u) = 〈z0,Πp(ta)z0〉. (10)

The following algorithm provides a solution for
Problem 5.

Algorithm 1. Consider a family of switched sys-
tems ((Sp)p∈Pm ,Σm).
Part A Solving m ODREs in each subinterval
backwards in time with the terminal condition for
an interval being the initial condition from the
next subinterval.
Step 1: Divide the interval [t0, tf ] into k = [ tf−t0

∆t ]
sub-intervals of length ∆t. ([·] denotes the integer
part of a real number).
Step 2: If tf > k∆t solve ODRE (9) with the
initial condition Πσ(k∆t)(tf ) = M , on the interval
[k∆t, tf ], for every possible value of σ(k∆t). Set
Mσ(k∆t) = Πσ(k∆t)(k∆t). Else, for each σ(k∆t) =
p ∈ Pm, set Mσ(k∆t) = M and proceed with Step
3.
Step 3: Solve, on the interval [tk−1, tk], the
ODRE (9) for each of the m-initial conditions
Πσ(tk−1)(tk) = Mσ(tk) and each value of σ(tk−1).



Step 4: Continue the procedure until the last in-
terval [t0, t1].
Part B Finding the optimal switching σopt and
uopt

σopt .
Step 5: Find the minimal cost of (6) as

Jm
opt(t0, tf ) = min

σ∈Σm
Jm

σ (z0; t0, tf , uopt
σ )

= min
σ∈Σm

〈z0, Πσ(t0)z0〉.
(11)

Step 6: Choose σopt as the switching function
corresponding to the optimal cost Jm

opt(t0, tf ).
Then the optimal input is uopt

σopt .

The total number of ODRE needed to be solved in
the above algorithm can easily be computed; e.g.
for tf = k∆t one has to solve

∑k
j=1 mk ODREs.

Theorem 6. Consider the switched system
((Sp)p∈P , σ) with the cost functional (4). For
every z0 ∈ Z there exists a unique input
uopt

σ (·; z0, t0, tf ) ∈ L2([t0, tf ], U) such that

J
(
z0; t0, tf , uopt

σ (·; z0, t0, tf )
)
≤ J(z0; t0, tf , u)

for all u ∈ L2([t0, tf ], U). Moreover, the Algo-
rithm 1 is optimal.

Simple properties that can be associated to the
above analysis are stated in the following lemma.

Lemma 7. Consider a fixed switching function
σ ∈ Σm. Then the following statements hold:

(1) The optimal trajectory does not depend on
the initial choice of the time t0.

(2) If t0 ≤ t1 ≤ t2 ≤ tk, then Πσ(t2) ≤ Πσ(t1).
(3) Πσ(·) is strongly continuous from the right in

[t0, tf ].
(4) If t0 ≤ t1 ≤ t2, then

Jm
σ (z0; uopt

σ , t0, t1) ≤ Jm
σ (z0;uopt

σ , t0, t2).

Using relations between costs on subintervals, the
following results hold (ti , i∆t).

Lemma 8. Consider t0 ≤ tk ≤ tl ≤ tn. Then

(1)

Jm
opt(z0; tk, tn) = min

σ∈Σm
Jm

σ (z0; tk, tn, uopt
σopt(tk,tn))

= min
σ∈Σm

〈z0,Πσ(tk,tn)(tk)z0〉
= 〈z0, Πσopt(tk,tn)(tk)z0〉.

(12)

(2) Jm
opt(z0; tl, tn) ≤ Jm

opt(z0; tk, tn).
(3) Πσopt(tl,tn)(tl) ≤ Πσopt(tk,tn)(tk).
(4) ‖Πσopt(tl,tn)(tl)‖ ≤ ‖Πσopt(tk,tn)(tk)‖

It should be noted that the optimal switching
function depends on the length of the interval ∆t.

4. TOWARDS OPTIMAL SWITCHING
POLICY OF MA ON INFINITE-TIME

INTERVAL

In this section we consider the infinite-time inter-
val with tf = ∞. As a necessary condition for the
solvability of Problem 1 on [t0,∞) , the existence
of at least one input function u and one switching
function σ that produce a finite cost Jσ(z0; u) is
required. This observation leads to the definition
of optimizability of the family of switched systems.

Definition 9. The family of switched systems
((Sp)p∈P ,Σ) with the cost functional (4) is op-
timizable if at least one of the switched system
((Sp)p∈P , σ) from the family is optimizable. This
means that, for every z0 ∈ Z there exist an input
function u ∈ L2([0,∞); U) and a σ ∈ Σ such that
the cost functional Jσ(z0;u) is finite.

Note that, for every p ∈ P, the definition for
the optimizability of a subsystem Sp which has
a constant switching function σ (no switch) cor-
responds to (Curtain and Zwart, 1995, Defini-
tion 6.2.1). If the whole state is accessible, i.e.
Cp = I for all p ∈ P, then for each subsystem Sp

with a constant switching function, optimizability
and exponential stabilizability are equivalent, see
(Curtain and Zwart, 1995, Exercise 6.5). We also
consider the following assumption.

Assumption 10. (Optimizability). Each of the sub-
systems Sp of the family of linear continuous-time
switched systems ((Sp)p∈P , Σ) corresponding to
constant switching functions σ is optimizable.

Similar to the classical situation, the solution of
the optimal control problem for switched systems
is closely related to the control algebraic Riccati
equations (CAREs)

A∗Π + ΠA−ΠBpB
∗
pΠ + C∗pCp = 0 on D(A). (13)

Assumption 10 is equivalent to the existence of
solutions of the CAREs (13) for each p ∈ P
(Curtain and Zwart, 1995, Exercise 6.9). Then the
cost (4) on [tf ,∞), for M = 0 (t0 is replaced with
tf , and tf with ∞) is

Jopt(z0; tf , uopt
p ) =

∞∫

tf

(
〈yopt

p (s), yopt
p (s)〉+ 〈uopt

p (s), Ruopt
p (s)〉

)
ds

= 〈zp(tf ), Πpzp(tf )〉,

(14)

where Πp are solutions of CAREs (13).



4.1 Fixed number of switches

Suppose that the family ((Sp)p∈P , Σ) satisfies
Assumptions 2–4 and Assumption 10. Moreover,
consider that for a fixed switching interval ∆t, a
maximum of n switches is allowed. Then the fol-
lowing algorithm provides the optimal switching
policy for moving actuators with respect to the
cost on the infinite-time interval.

Algorithm 2. Step 1: Take tf , n∆t.
Step 2: For each p ∈ Pm find Mp, the smallest
nonnegative solutions of the CARE (13).
Step 3: For each p ∈ Pm, solve the optimal switch-
ing problem on the finite time interval [t0, tf ] with
M = Mp. Using Algorithm 1, find the m minimal
costs of (11) as

Jm
p,opt(t0, tf ) = min

σ∈Σm
〈z0, Πp

σ(t0)z0〉 (15)

Step 4: Find the minimal cost on [t0, tf ] as

Jm
opt(t0, tf ) = min

p∈Pm
Jm

p,opt(t0, tf ).

Step 5: Choose σopt and popt as the switching func-
tion and the index corresponding to the optimal
cost Jm

opt(t0, tf ). Take the optimal input uopt
σopt on

[t0,∞) as the one corresponding to σopt and popt.

4.2 Switching under stability assumptions

Suppose that the family ((Sp)p∈P , Σ) satisfies As-
sumptions 2–4 and Assumption 10. We replace the
fixed number of switches assumption, taken in the
previous subsection, with a stability assumption.

The closed-loop trajectory of any switched system
on the finite-time interval [t0, tn], satisfies

zσ(tn; z0, t0, tn) =
n−1∏

i=0

Ucl,σ(ti)(ti, ti−1)z0, (16)

where Ucl,p(t, s) are the mild evolution operators
on {(t, s); ti−1 ≤ s ≤ t ≤ ti} with generators
Acl,p(t) defined in (8). Then all switched systems
are asymptotically stable (i.e. z(tn) → 0 as tn →
∞) if

n−1∏

i=0

(
γ + γ2 + γ3 ‖Dσ(ti)‖2(∆t)2

2

)
→ 0 (17)

as n → ∞. Here γ , supt∈[0,∆t] ‖T (t)‖, and
Dσ(ti) , −Bσ(ti)R

−1B∗
σ(ti)

Πσ(ti)(t). We refer to
(Curtain and Zwart, 1995, Proof of Theorem
3.2.5) for a bound of the mild evolution operator.

Assume that all switched systems from the given
family are asymptotically stable. Then, for any
ε > 0, there exists an n ∈ N such that

M , max
p∈Pm,σ∈Σm

〈zσ(tn),Πpzσ(tn)〉 < ε. (18)

Then the following algorithm finds an ε-optimal
solution for Problem 5.

Algorithm 3. Step 1: Chose ε > 0 and n = 1.
Step 2: For each p ∈ Pm find Mp, the smallest
nonnegative solutions of the CARE (13).
Step 3: For any σ ∈ Σm compute zσ(tn), where
tn , n∆t.
Step 4: Calculate M .
Step 5: If M > ε take n = n+1. Return to Step 3.
Step 6: Continue with Step 3 in Algorithm 2.

The above algorithm can be further improved in
order to reduce computational efficiency. One can
replace M > ε in Step 5 with a trade-off condition
between the error on [t0,∞) and a ε1 optimal
condition on [t0, tf ].

5. EXAMPLE

The particular example in this paper considers op-
erators (Bp)p∈P which approximately model point
actuators and sensors. When heating a metal rod
(Curtain and Zwart, 1995, Example 4.1.2), one
can consider U = Y = C, Z = L2(0, 1), and for
each p ∈ P, Bpu = 1

2ε1[ξ0,p−ε,ξ0,p+ε](ξ)u, where

1[α,β] =
{

1 for α ≤ ξ ≤ β
0 elsewhere .

The system under examination is described by the
following partial differential equation modelling
metal heating and is given by

∂x

∂t
(t, ξ) =

∂

∂ξ

(
κ(ξ)

∂x

∂ξ
(t, ξ)

)
+

1[ξ0,p−ε,ξ0,p+ε](ξ)
2ε

u(t)

where the spatially varying thermal parameter is

κ(ξ) = 0.01
(
1 + 0.25× sin

(
3πξ

L

)
× sin2(ξ)

)
.

Associated with the above PDE are the boundary
conditions, taken here as Dirichlet with x(t, 0) =
x(t, L) = 0 and L = 2, and the initial conditions
given by x(0, ξ) = 10 sin(πξ). It is assumed that
the state is fully accessible, i.e. Cp = I for every
p ∈ P. For this numerical study, we considered
Algorithm 2 since we assumed that only three
switches are allowed (n = 3). While Algorithm 2
considers the finite horizon case on the interval
[t0, tf ], we also implemented Algorithm 3 in or-
der to find the smallest final time tf that would
satisfy (18). Once such final time is found, it is
subsequently used in Step 1 of Algorithm 2 in
conjunction with the fixed number of switches.
The computations were carried out via codes writ-
ten in Matlabr run on a dual processor DELLr

workstation(Xeon 2.8GHz, 2 × 2GB). The closed
loop system was discretized using a spline-based
Galerkin approximation scheme with 20 basis ele-
ments. The resulting finite dimensional system of
ODEs was integrated using Matlabr ODE library.
All required (spatial) integrals were computed



numerically via a composite two point Gauss-
Legendre quadrature rule. The resulting ODREs
(9) were solved using the BDF 1-step method
presented in (Benner and Mena, 2004). The set
of candidate positions was chosen via

Pm = {pj : pj =
(j − 0.137)L

m + 1
, j = 1, . . . , m},

with m = 3 and the LQR parameters were chosen
as R = 1, Q = 4 × 10−2I, M = I. Using Algo-
rithm 3, the final time tf for the ε-optimal solution
to Problem 5 with a level ε = 0.8 in (18) resulted
in tf = 21 with ∆t = 7 sec. With that value of
tf , Algorithm 2 was implemented for the finite
horizon [0, 21]. The system was then simulated
for the interval [21, 35] using a controller based
on the infinite-horizon problem. Specifically, the
optimal actuator switching scheme predicted the
sequence 331 meaning that for the interval [0, 7]
the 3rd actuator was used, for the time interval
[7, 14] the 3rd actuator was used again, and for
the time interval [14, 21] the 1st actuator was em-
ployed. The controller then employed actuator #1
for the interval [21, 35] using a constant feedback
gain obtained from the solution to the associated
CARE in (13). As a comparison, a non-switching
actuator was considered which employed the 1st

actuator throughout the finite horizon [0, 21] that
used the optimal control (7) via the solution to
(9). Continuing, the infinite horizon problem was
solved for [21, 35] using the 1st actuator. The time
evolution of the L2 norm of the closed loop system
is presented in Figure 1, where the optimal switch-
ing case is depicted by a solid line and the (non-
switching) optimal case with a fixed actuator is
depicted by a dashed line. One can easily observe
the performance improvement when both the ac-
tuator and the control signal are allowed to switch.
The associated actuator switching sequence for
both cases is presented in Figure 2.
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Fig. 1. L2(0, L) norm of x(t, ξ) vs time; switching
actuator (solid) and fixed actuator (dashed).
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Fig. 2. Actuator allocation (switching) for m = 3
actuator locations; switching (solid) and fixed
(dashed).

6. CONCLUSIONS
We have presented an algorithm that allows for
the optimal actuator and controller switching pol-
icy in a class of hybrid DPS. In addition to pro-
viding the theoretical results for the finite horizon
case, two additional cases were considered which
account for: a fixed number of switches and for
the case of choosing the minimum finite horizon
limit. Beyond these cases the system no longer re-
quired any switching. The latter case allows one to
employ stability assumptions to find the smallest
limit of the finite horizon optimal control problem.
Extensive simulation studies combining various
algorithms were presented and which exhibited
the superior performance of the hybrid system
when an actuator was allowed to switch.
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