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1. INTRODUCTION

Parallel computer architectures utilize a set of
computational elements (CE) to achieve perfor-
mance that is not attainable on a single processor,
or CE, computer. A common architecture is the
cluster of otherwise independent computers com-
municating through a shared network. To make
use of parallel computing resources, problems
must be broken down into smaller units that can
be solved individually by each CE while exchang-
ing information with CEs solving other prob-
lems.For a background on mathematical treat-
ments of load balancing, the reader is referred to
(Altman and Kameda, 2001). Effective utilization
of a parallel computer architecture requires the
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computational load to be distributed more or less
evenly over the available CEs. The qualifier “more
or less” is used because the communications re-
quired to distribute the load consume both com-
putational resources and network bandwidth. The
distribution of computational load across avail-
able resources is referred to as the load balancing
problem in the literature.

Load balancing policies have previously been pro-
posed for categories such as local versus global,
static versus dynamic, and centralized versus dis-
tributed scheduling (Cybenko, 1989; Lan et al.,
2001). Direct methods examine the global distrib-
ution of computational load and assign portions
of the workload to resources before processing
begins. Iterative methods examine the progress
of the computation and the expected utiliza-
tion of resources, and adjust the workload as-
signments periodically as computation progresses.
A comparison of several methods is provided in
(Willebeek-LeMair and Reeves, 1993; Ghanem,
2004).



To introduce the basic approach to load balanc-
ing employed in this paper, consider a computing
network consisting of n heterogeneous computers
(nodes) all of which can communicate with each
other. At start up, the computers are assigned a
random number of tasks. The loads on various
nodes quickly becomes uneven since applications
may generates more tasks and the computational
power of each node is varying. To balance the
loads, each computer in the network sends (broad-
casts) its current state (i.e. current queue size,
computational power, etc.) to all other comput-
ers in the network. At every balancing instance
(either calculated or predefined), each node uses
information about its current state along with
state information received from other nodes to
calculate the new load distribution. Afterward, a
portion of the node’s current load scaled by a gain
parameter K is transmitted to some other nodes
as depicted by the load balancing policy. No-
tice that, networks connecting the different nodes
(Wireless LAN, Internet, etc..) typically exhibit
significant latency in the exchange of information
and the actual transfer of loads. Thus, the bal-
ancing policy has no choice but to rely on dated
information about the system of nodes, which, in
turn, may result in unnecessary transfer of loads
while certain nodes remain idle as the loads are in
transit.

Previous work focused on analytically modelling
the behavior of a system that undergoes load
balancing and subsequently deriving adequate
load balancing policies. The deterministic time
model is a continuous-time described in terms
of a nonlinear delay-differential system (Abdallah
et al., 2003; Birdwell et al., 2004). It consid-
ers deterministic communication and transfer de-
lays. Experimental evaluations of the model using
its derived policy were conducted over a LAN
and the Internet where optimization over the
gain parameter K was performed (Ghanem et
al., 2004a; Chiasson et al., 2005). The limitations
and the overheads involved with the implemen-
tation of the deterministic-delay load-balancing
policy in a random delay environment has been
discussed by the authors in (Hayat et al., 2004).
Similarly, in (Dhakal et al., 2003; Ghanem et
al., 2004b), Monte-Carlo studies and real-time ex-
periments were conducted over the wireless LAN
to study one-shot dynamic load-balancing scheme
for distributed systems. Moreover, a regeneration-
theory-based mathematical model, represented by
a set of coupled integro-difference equations, for
one-shot load-balancing policy as applied to a two-
nodes distributed system was presented (Dhakal,
2003; Ghanem et al., 2004b; Dhakal et al., 2004).

In this paper, a new dynamic, adaptive, and
distributed load-balancing policy is introduced
based on the policies that were previously pre-

sented. This strategy takes into account the fol-
lowing three aspects: i) the connectivity among
the nodes, ii) the computational power of each
node, and iii) the throughput and bandwidth of
the system. The occurrence of load-balancing in-
stances, i.e. when to trigger the load distribution
strategy, is not discussed in this paper since it is
possible to employ one-shot load-balancing, multi-
ple balancing instances, or any other scheme that
would be suitable for the system at hand(Ghanem,
2004; Ghanem et al., 2004b; Dhakal et al., 2005;
Dhakal et al., 2004; Dhakal, 2003). Furthermore,
exchanged information about the state of the
nodes is still assumed to occur frequently with ad-
ditional information to be discussed subsequently.

In Section 2, The new load distribution strategy
is introduced and in Section 3, the computational
methods of the adaptive parameters used by the
policy are described. In Section 4, experimental
evaluation of this new dynamic policy conducted
over the Internet is presented. Section 5 contains
our conclusions and direction for future research.

2. DYNAMIC AND ADAPTIVE POLICY
DESCRIPTION

As observed in (Barabasi, 2003; Newman, 2003)
, the Internet is not as completely connected as
one might think. Add to that the fact that in
distributed systems, a node may become unavail-
able or unreachable at any time due to a fail-
ure in the node itself, or in the network path
leading to it. Therefore, the assumption made
by the load-balancing policies that all nodes are
accessible at any time is unrealistic especially in
Internet scale distributed systems or in Ad-Hoc
wireless networks. This will greatly affect the load-
balances state of the system since loads assigned
to unreachable nodes can never be delivered. The
proposed algorithm can detect the connectivity
in the system and decide accordingly what nodes
may participate in the load sharing. At each load-
balancing instance, the group of reachable nodes
is referred to as the “current node set.”

This load-balancing policy also takes into account
the change in the computational performance of
nodes and distributes the tasks accordingly. Ac-
tually, the system is not dedicated to the appli-
cation at hand; other users may be using one or
more nodes at a given time and therefore alter
their computational power. Moreover, tasks are
not considered identical, they may greatly differ
in their completion time. These facts cannot be
guessed a priori and assigning fixed computational
power for each node is not always suitable. There-
fore, the load strategy should be adaptive to these
changes and be able to make decisions accordingly.



Moreover, transfer delays incurred when tasks are
migrated from a node to another may be unex-
pectedly large and result in a negative impact
on the overall system performance (Dhakal et
al., 2004). To avoid this situation, an a priori
estimate of the transfer delays will help the policy
at hand decide if the transfer is profitable and
adequately decide on the size of load to migrate.
These estimates should also be dynamically up-
dated since delays may greatly vary during the
system’s life as shown for delays of class B in the
classification of (Bovy et al., 2002). Network de-
lay and connectivity experiments conducted over
Wireless LAN and the Internet can be found in
(Ghanem, 2004; Georgatos et al., 2001; Bovy et
al., 2002)

To further describe the policy, the following para-
meters are defined.

• n is the number of nodes present in the
system.

• qi denotes the number of tasks in the queue
of node i.

• Ci denotes the average completion time of a
task at node i in seconds.

• si is the average size of a task in bytes at
node i when it is transferred.

• rij is the throughput or transfer rate in
bytes/seconds between node j and node i.
Note that in general rij 6= rji.

• qj,av is the average queue size calculated by
node j based on its locally available informa-
tion.

• qj,excess is the excess number of tasks at node
j. (Detailed definition given later.)

• pij is the fraction of the excess tasks of node
j to be transferred to node i as decided by
the load balancing policy.

The first 5 parameters are assumed known at the
time the load distribution process is triggered.
That is, the update of these variables is done
before the balancing instance is reached as will
be described later. The general steps of the load-
balancing policy invoked at node j are described
below followed by a detailed description.

(1) Determine how many nodes are reachable
(no) from node j.
Calculate the average queue size qj,av and
the number of excess tasks qj,excess based on
locally available information.

qj,av =
1
no

∑

i: node(i) reachable

qi
Ci

Cj

qj,excess =

{
(qj − qj,av) ∗K if qj > qj,av,

0 otherwise,

where K is the predefined gain parameter.
The algorithm exits if qj,excess = 0.

(2) Determine how many (i.e., n′o) and which
nodes are below the average. These nodes will
participate in the load sharing as viewed by
node j.

(3) Calculate the optimal p′ij fraction only for
the n′o nodes using the following formula:

p′ij =
qi,av − (Ci/Cj)qi∑

k � k 6=j

qk,av − (Ck/Cj)qk

(4) Calculate p′′ij for the n′o nodes, which is is
the maximum portion of the excess load that
is judged to be profitable when transmitted
to node i.

p′′ij =
(qj − qj,excess)Cjrij

qj,excesssj

Set pij = min(p′ij , p
′′
ij).

(5) If
∑

i pij > a (a is a predefined threshold
parameter between 0 and 1)

transmit (pijqj,excess) tasks to node i,
Otherwise

repeat step 1 to step 4,
assign the remaining fraction (1 −∑

i pij) to nodes that have p′′ij > p′ij and
call the newly assigned fractions p′′′ij ,
transmit (pij + p′′′ij )qj,excess tasks to
node i.

The first step determines the node set where the
load distribution will take place from node j’s
perspective. This is achieved by checking the last
time state information was received from each
node. To test for connectivity to node i, the local
timestamp of the last received state packet is
compared to the current time decremented by
three times the interval between 2 consecutive
state broadcasts. That is, if the last state packet
received from node i is one of the last three packet
transmitted, node i is considered to be reachable
from node j otherwise it is not included as part
of the load-balancing node set since most likely, a
load transmitted to this node will not be correctly
delivered. Therefore, it is more suitable for the
policy to base its calculations on nodes where mi-
gration of loads have higher probability of success.
Note that at every instance of the load distribu-
tion process and for every node, the corresponding
node set may end up with different elements ac-
cording to the node’s connectivity at that time.
After that, the local queue average is calculated
where each queue is scaled by the Ci/Cj factor
that accounts for the difference in computational
power of each node. In the queue excess calcula-
tions, a gain factor K is used since it is becoming a
requirement in any policy that operates on large-
delay systems where outdated state information is
prominent. This fact appears in the experimental
and theoretical studies conducted in earlier work
(Abdallah et al., 2003; Hayat et al., 2004; Ghanem
et al., 2004b; Chiasson et al., 2005).



The second and third steps employ the method
introduced in (Chiasson et al., 2005; Abdallah et
al., 2003; Ghanem et al., 2004a) and used earlier
in the literature in the Sender/Receiver Initiated
Diffusion (SID and RID) policies (Saletore, 1990;
Willebeek-LeMair and Reeves, 1993) to calculate
the fractions p′ij . This method is attractive since
it only considers nodes that have queue sizes less
than the average, and therefore results in as few
connections as possible when the excess load is
moved out of node j which makes the policy at
hand more scalable. Moreover, this method leads
to optimal results when the policy is triggered
once on each node and where no delay is present
in the system. Note that the formula is adjusted
by the Ci/Cj factor.

The fourth step judges if the proportion p′ij deter-
mined is worth transmitting to node i when trans-
mission delays are present. This is accomplished
by setting an upper bound on the maximum pro-
portion of the excess load that is profitable when
the exchange takes place. The task migration is
said to be profitable if the time needed to transmit
the load to the other end is less than the time
needed to start executing the load on the current
node (node j in this case). This statement is
interpreted as follows,

p′′ijqj,excess(sj/rij)︸ ︷︷ ︸
transmission delay

< (qj − qj,excess)Cj︸ ︷︷ ︸
start of load execution

Solving for p′′ij , we get the upper bound for pij

as indicated in step 4. In the event that rij is
not available, rji is used instead to provide an
approximation of the bandwidth between node
j and i. If neither parameter is available, step
4 is omitted for the node pair (i, j). The rate
rij is detected and updated each time a load
is transmitted from node i to node j as will
be explained in the subsequent section where
rji is received in the state information packet
transmitted by node i to node j.

The fifth step is included for completion and can
be omitted at any time. The rationale behind
it is that after executing the algorithm, node j
may find itself only transmitting a small portion
(i.e., less than a variable a) of its excess load due
to the delay restrictions. Therefore, it is suitable
to reassign the remaining untransferred propor-
tion to the nearest nodes (i.e., nodes reached
through links of higher rate) in the hope that
they may possibly have better connectivity to
the system. This idea is inspired by the Small-
World network model and the hubs/connectors
concept where special nodes denoted as hubs have
better connectivity to other nodes (Watts and
Strogatz, 1998; Barabasi, 2003).

3. ADAPTIVE PARAMETERS
COMPUTATION

In this section, the computation procedure for the
dynamic parameters C and rij is explained. Note
that the si parameter can be easily determined by
averaging the tasks’ sizes upon their creation.

Every time a task is completed by the application
layer at node i, the Ci parameter is updated as
follows,

if Ci = 0 then Ci = Ttask

else Ci = αTtask + (1− α)Ci

where Ttask is the execution time of the last task
and α is a gain parameter that affects the Ci term
in its ability to reflect the current computational
power of the system. Therefore, the values of α
are critical to the stability and efficiency of the
load-balancing policy. That is, assigning values
in the high range of (0,1] to α may result in
fluctuations in the Ci parameter which will have
in turn an adverse impact on the decision of the
load distribution, leading to bouncing of tasks
back and forth between nodes. On the other hand,
setting α to low values may not keep the load-
balancing policy informed about the latest state
of the node. Consequently, the value of α should
be selected depending on the application used
and the interference degree of external users. The
update procedure could be easily modified to suit
other methods.

The other parameter that is dynamically updated
is the transfer rate rij incurred between node j
and node i. On each data (or tasks) transmis-
sion, the transfer delay Tdelay is recorded and
is calculated by taking the difference between
the instance the connection is initiated by node
j and the instance node i acknowledgment of
tasks reception is received by node j. Conse-
quently the average transmission rate (rate =
Tdelay/totalsize) is calculated, where ’totalsize’ is
the total size of the tasks migrated to node i.
After each successful exchange of loads, the rij

parameter is updated as follows:

if rij = 0 then rij = rate
else rij = β ∗ rate + (1− β)rij

This scheme is a simplified version of the method
used to update the Round Trip Time (RTT) of the
packet exchanged during a TCP connection where
the delay variance is additionally taken into con-
sideration (Institute, 1981). In the next section, β
was set to 1/8 as suggested by (Jacobson, 1988)
for the RTT update method.

Finally, both parameter Cj and rij are included
in node j state information when transmitted to
node i for all i = 1, ..., n , i 6= j.



4. EXPERIMENTAL EVALUATION

To test the performance of the newly proposed
load-balancing policy denoted as lb2, a compara-
tive experiment was performed between this pol-
icy and the strategy adopted by the stochas-
tic model introduced in (Hayat et al., 2004;
Dhakal et al., 2004) and referred to as lb1 (1).
The experiments were conducted over Planet-
Lab(http://www.planet-lab.org) and the initial
settings and parameters are shown in Table 1.
Details about the implementation of the system
used to experimentally test the policies are found
in (Ghanem, 2004). The average network transfer
rates for each path as detected by the system are
shown in Table 2.

node 1 node 2 node 3

Location
UNM 
(University of 
New Mexico)

Frankfurt - 
Germany

Sinica - 
Taiwan

Initial Distribution 600 tasks 250 tasks 100 tasks

Average Task Processing 
Time C  (ms) 160 400 500

Average size of a task (Kbytes) 3.12
Interval between 2 load balancing instances (s) 1.5
Interval between 2 state transmissions (s) 10

Table 1. Parameters and settings of the
experiment.

From - To node 1 node 2 node 2
node 1 - 34.5 KB/s 73.3 KB/s
node 2 18.7 KB/s - 45.4 KB/s
node 3 48.9 KB/s 20.2 KB/s -

Table 2. Average transmission rates be-
tween the different nodes.

First, lb2 was evaluated for the gain values K
between 0.3 and 1 with 0.1 incremental steps. The
α parameter introduced in the previous section
was set to 0.05 by running several experiments and
observing the behavior of the C parameter. Note
that, the first time the load-balancing process
was triggered was after 20s from the start of
the system and then the strategy was executed
regularly at 10s intervals. This was done to ensure
that the C parameter had enough time to adapt
and reflect the current computational power of
each node before the occurrence of any tasks
migration between the nodes.

Second, lb1 was evaluated under the same condi-
tions as lb2. Since there is a discrepancy between
the computational power of the nodes (as shown in
Table 1), the lb1 strategy was adjusted to account
for these differences by scaling the queue sizes in
the pij computation as follow,

pij =





1

n− 2

(
1− (Ci,avg/Cj,avg)Queue(i)∑n

k=1,k 6=j
(Ck,avg/Cj,avg)Queue(k)

)

if all Q(i) are known.

1/(n− 1) otherwise

(1)

Note that the ratios Ci,avg/Cj,avg are fixed over
time: Ci,avg is the average computation power

of node i. These values were obtained from the
lb2 experiments by averaging over all the tasks
processing time at each node.

Both policies were evaluated by conducting 5 runs
for each value of K between 0.3 and 1 with
0.1 incremental step. Figure 1 shows the overall
average completion time versus K and Figure
2 shows the total number of exchanged tasks
between all the nodes.
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Fig. 1. completion time averaged over 5 runs
versus different gain values K. The graph
shows the results for both policies.
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Fig. 2. Total number of tasks exchanged averaged
over 5 runs versus different gain values K.
The graph shows the results for both policies.

We can clearly see that lb2 outperformed lb1 espe-
cially for K = 0.8 that corresponds to lb2 earliest
completion time whereas lb1 performed best at
K = 0.5. The reason may be that lb2 used greater
predictive computations before distributing the
loads, which makes it “more or less” indepen-
dent of the gain value K (in the range [0.6 0.9]).
On the other hand, lb1 only uses static statisti-
cal information about the nodes’ computational
capability. As for the network traffic generated
during the lifetime of the system, lb2 had fewer
tasks exchanged for most of the gain K values.
It is expected that the difference in total tasks
migrated between the 2 policies will grow as the
number of nodes increases.

5. CONCLUSION AND FUTURE WORK

In this paper, a dynamic load-balancing policy
that takes into account the connectivity between
the nodes, the variability in computational power
and the network transfer delays was introduced.



Preliminary experimental results show that the
proposed strategy, thanks to taking advantage of
dynamical knowledge of the state of the nodes
and network, provides improvements over policies
implemented earlier.

Further investigations of this strategy are needed;
more experiments should be conducted on a larger
number of nodes to test its performance and more
importantly its scalability. Moreover, the update
methods of the adaptive parameters C and rij

should be enhanced by observing the impact of
the gain values α and β on the stability of the
system.
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