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1. INTRODUCTION

In the field of dynamic system identification, the so-
called Maximum Likelihood (ML) principle and its re-
lations, such as Prediction Error (PE) techniques, play
a key role. Despite the advantages of ML/PE methods,
their practical deployment is not always straightfor-
ward. This is largely due to the non-convex optimisa-
tion problems that are often implied. Typically, these
are solved via a gradient-based search strategy such as
a Newton type method or one of its derivatives (Ljung,
1999; T.S̈oderstr̈om and P.Stoica, 1989; Dennis and
Schnabel, 1983).

The success of this sort of approach depends on the
chosen system parametrization. Selecting the latter
can be difficult, particularly in the multivariable case
where the cost contours resulting from natural canoni-
cal state-space parametrizations imply poor numerical
conditioning during gradient-based search (Deistler,
2000; McKelvey, 1998).

Indeed, the possibility of avoiding these parametrization-
based difficulties is one of the key reasons for the
recent intense interest in State Space Subspace based
System Identification (4SID) methods (van Overschee
and Moor, 1996; Larimore, 1990; Verhaegen, 1994).
With these techniques, every element of every matrix
in the state space model is estimated, which this paper
terms a ‘fully parametrized’ model structure.

More recently, the use of these fully parametrized
structures has been investigated in the context of gra-
dient based search for ML/PE estimates (McKelveyet
al., 2004; McKelvey and Helmersson, 1999; Bergboer
et al., 2002; Verdultet al., 2002; Lee and Poolla,
1999). An essential point of this work is to recognise
that a full parametrization is an over-parametrization,
but that a minimal parametrization which is (locally)
linearly related to the full parametrization can be sim-
ply derived.

These local representations have been dubbed ‘Data
Driven Local Co-ordinates’ (DDLC). Their employ-
ment reduces computational requirements, and also
(usually) avoids rank deficiency of the prediction error
Jacobian. This simplifies the computation of search di-
rections. These features render DDLC-based gradient
search as a very effective means for finding ML/PE
estimates of multivariable systems, and indeed it has
become the default method for multi-variable system
estimation implemented in the widely used Matlab
System Identification Toolbox (Ljung, 2004).

This paper is also directed at the development of gra-
dient based search methods for ML/PE estimation of
multivariable systems. Full parametrizations are also
employed here, but instead of employing a DDLC-
based local re-parametrization to avoid Jacobian rank-
deficiencies, alternative “robust” strategies are pro-
posed for computing search directions.



These robust methods for computing search directions
effectively involve discarding elements of the Jaco-
bian matrix that lie in its own kernel. A first main
result of this paper is that if this discarding is imple-
mented whereby a certain fixed dimensional subspace
of the Jacobian is eliminated in the computation of a
search direction, then this ensuing direction isidenti-
cal to that obtained via DDLC methods.

While this may be of independent interest in terms of
providing insight into the search mechanism inherent
to DDLC techniques, its main significance in relation
to this paper is that it establishes that DDLC methods
are simply a particular choice within a range of search
direction alternatives that are designed to be robust to
Jacobian rank.

As such, this paper proposes and then examines a
strategy of employingdynamicJacobian rank alloca-
tion as part of search direction computation.

2. PROBLEM SETTING

This paper considers the problem of system estima-
tion using the following innovations-form state-space
model structure:[

xt+1

yt

]
=

[
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C D

] [
xt

ut

]
+

[
K
I

]
vt. (1)

Hereut ∈ Rm is the observed input,yt ∈ Rp is the
observed output,vt ∈ Rp is a zero mean i.i.d. stochas-
tic process that models measurement corruptions, and
the statext ∈ Rn.

In order to compute estimates, this paper will employ
a full parametrizationof the system matrices in (1).
Specifically, this work will address the estimation of a
parameter vectorθ ∈ Rnθ given as

θT ,
[
vec{A}T , vec{B}T , vec{C}T , vec{D}T , vec{K}T

]
.

(2)
Here, the vec{·} operator is one which forms a

vector from a matrix by stacking its columns on top
of one another. Via this, and the innovations form of
the structure (1), the steady-state mean square optimal
one-step-ahead predictor̂yt|t−1(θ) associated with a
model parametrized byθ can be simply expressed
as (Ljung, 1999)

x̂t+1|t = (A−KC)x̂t|t−1 + (B −KD)ut + Kyt,

ŷt|t−1(θ) = Cx̂t|t−1 + Dut.
(3)

Therefore, with the assumption that{vt} is Gaussian
distributed asvt ∼ N (0, σ2Ip), σ2 ∈ R+, and
neglecting constant terms which are immaterial to
the estimation process, the associated log likelihood
function for the data is given as

L(θ) = −
Np

2
log σ2 −

1

σ2
‖E(θ)‖2. (4)

Here the prediction error vectorE(θ) is defined as

E(θ) ,
[
yT
1 − ŷT

1|0(θ), yT
2 − ŷT

2|1(θ), · · · , yT
N − ŷT

N|N−1(θ)
]T

(5)
and the norm used in (4) is the Euclidean one. Notice
that, according to (4) there is an essential decoupling
between the estimation ofσ2 and the elements of the
parameter vectorθ defined in (2). Namely, under the

model structure (1), the ML estimatêθ is given as an
element satisfying

θ̂ ∈ {θ ∈ Rnθ : ‖E(θ)‖ ≤ ‖E(θ)‖, ∀θ ∈ Rnθ}. (6)

If the aforementioned Gaussian assumption is vio-
lated, then the criterion (6) will no longer yield a
Maximum-Likelihood solution. However, it will still
specify a minimum prediction error norm estimate that
will, asymptotically in observed data length, possess
statistical properties that are closely related to those of
a Maximum-Likelihood solution.

Balancing these attractive features,θ̂ defined by (6)
cannot be specified in closed form due to the nonlinear
dependence ofE(θ) on θ. In recognition of this, the
previous work (McKelveyet al., 2004; McKelvey
and Helmersson, 1999; Bergboeret al., 2002; Verdult
et al., 2002; Lee and Poolla, 1999) has focused on
this problem of finding minima of‖E(θ)‖, and has
explored a gradient search approach. This paper is
also directed at studying these methods, and seeks to
propose, analyse and empirically substantiate effective
variants of them.

3. GRADIENT-SEARCH BASED METHODS

Gradient search strategies have long been employed
in a wide variety of system identification applica-
tions (Ljung, 1999). These methods are commonly
motivated (Dennis and Schnabel, 1983, Chap. 10))
by an argument that the quadratic nature of‖E(θ)‖2
suggests the use of a linear approximation ofE(θ)
about a current guessθk of a minimiser according to

E(θ) ≈ E(θk) + E′(θk)(θ − θk), E′(θk) ,
∂E(θ)

∂θ

∣∣∣
θ=θk

(7)
in which case the ensuing approximation

min
θ
‖E(θ)‖ ≈ min

θ
‖E(θk) + E′(θk)(θ − θk)‖ (8)

by virtue of being affine inθ, does have a solution
which can be found in closed form. However, this
solution is only unique if the JacobianE′(θk) is of
full column rank.

The Levenberg–Marquardt and Gauss–Newton ap-
proaches ((Dennis and Schnabel, 1983, Chap. 10),
(Nocedal and Wright, 1999, Chap. 10) and (Fletcher,
1987, Chap. 6)), are undoubtedly the most famous gra-
dient based iterative search methods used in solving
problem (6), and both use the linear approximation
given in (7). Indeed, both methods involve the cal-
culation of a search directionp and also (eg. in the
‘damped’ Gauss-Newton case) a step lengthα, such
that thek+1’st iterateθk+1 in the search for̂θ is found
from the previous iterateθk by

θk+1 = θk + αp. (9)

In particular, the search directionp for both methods
is obtained from

p ∈ {d ∈∆ ⊆ Rnθ : ‖E(θk)− E′(θk)d‖
≤ ‖E(θk)− E′(θk)d̄‖, ∀d̄ ∈ Rnθ},

(10)

In the Levenberg-Marquardt method,∆ (assumed
here to be a sphere) is chosen in an adaptive manner
according to how well the local approximation pre-
dicts the actual algorithm performance.



When a ‘damped’ Gauss-Newton technique is used
instead, the search region is taken as∆ = Rnθ , and
a second stage is introduced to compute a step length
α > 0 such that‖E(θk + αp)‖ < ‖E(θk)‖.
In both cases the search direction defined by (10) is
any vectorp which satisfies[

E′(θk)T E′(θk) + λI
]

p = −E′(θk)T E(θk), λ ≥ 0 (11)

whereλ ∈ R is taken as zero in the Gauss–Newton
method, and is any positive value that ensures that
p ∈ ∆ in the Levenberg–Marquardt case.

4. DATA DRIVEN LOCAL CO-ORDINATES
(DDLC)

The full parametrization (2) is an over-parametrization
in that the set of systems represented by (1) is a
manifold of dimensionnθ − n2 = n(m + 2p) +
mp. This implies, since the JacobianE′(θk) hasnθ

columns, that the Jacobian is rank deficient, with a
kernel of dimension of (at least)n2. Therefore, the
search direction (11) in the damped Gauss–Newton
case ofλ = 0 is not uniquely defined.

In reaction to this, several authors have proposed
the use of a certainnθ − n2 dimensional minimal
parametrization that is related to the full parametriza-
tion (2) via an affine transformation, and which
has been dubbed ‘Data Driven Local Co-ordinates’
(DDLC) (McKelvey et al., 2004; McKelvey and
Helmersson, 1999; Bergboeret al., 2002; Verdultet
al., 2002; Lee and Poolla, 1999).

In this work, the key idea has been to identify the set
of systems parametrized byθ ∈ Rnθ that are input-
output equivalent. This can be conveniently described
by a mappingSθ(T ) : Rnθ → Rnθ that depends on
an arbitrary invertible matrixT ∈ Rn×n according to

Sθ(T ) =


T −1AT

T −1B
CT
D

T −1K

 . (12)

This mapping is clearly nonlinear with respect toT .
However, sinceSθ(T ) is differentiable onMn ,
{T ∈ Rn×n : det(T ) > 0} (Lee and Poolla,
1999), a linear approximation applying locally for a
perturbation∆T aroundT = In may be derived as

Sθ(In+∆T ) ≈ Sθ(In)+S′θ(In) vec{∆T} = θ+Q vec{∆T}

where

Q , S′θ(In) =
∂Sθ(T )

∂ vec{T}

∣∣∣
T=In

=


AT ⊗ In − In ⊗A

BT ⊗ In

−In ⊗ C
∅mp×n2

KT ⊗ In

 .

(13)
This implies that a parameter space update in the
search directionp , Q vec{∆T} for any ∆T will
locally yield a system with equivalent input-output
properties, and hence, an unchanged value of‖E(θ)‖.
Therefore, it seems reasonable to restrict search direc-
tions to be orthogonal to the columns ofQ.

In recognition of this, the works (McKelvey and
Helmersson, 1997; McKelvey and Helmersson, 1999;

Lee and Poolla, 1999; Bergboeret al., 2002; Verdultet
al., 2002) have suggested the use of a local co-ordinate
structure, termed DDLC, that is minimal in the sense
that distinct points in parameter space correspond to
non input-output equivalent systems. More specifi-
cally, a vectorβ ∈ Rnθ−n2

is used to parametrize this
local co-ordinate system according to

θ(β) = θ + Pβ (14)

where the columns ofP are chosen by (for example)
a singular value decomposition ofQ, and satisfy the
requirements

P T P = I, P T Q = 0, R(P )⊕R(Q) = Rnθ . (15)

Here R(Q) , {x : x = Qy for somey} is the
column space ofQ and similarly forP .

Thus, according to the local parameterisation (14),θ
can only move in directions that are a linear com-
bination of the columns ofP , i.e. in directionsPβ.
Hence, we may treatθ as a function ofβ and obtain
the following problem related to (8)

min
β
‖E(θk) + E′(θk)Pβ‖. (16)

As explored by (McKelvey and Helmersson, 1997;
McKelvey and Helmersson, 1999; Bergboeret al.,
2002), the benefit of solving (16) is thatβ typically has
dimensionn2 less than that ofθ and it seems reason-
able to expect that the computational load is therefore
diminished. In order to understand the properties of
this DDLC approach, note that according to the local
parametrization (14), the prediction error vectorE(·)
can be restated as a function ofβ by defining a new
functionEθ : Rnθ−n2 → RNp according to

Eθ(β) , E(θ(β)) = E(θ + Pβ), (17)

where the subscript denotes thatθ, and consequently
P , are fixed. Furthermore, the Jacobian ofEθ is given
(via application of the chain-rule) as

E′
θ(0) ,

∂Eθ(β)

∂β

∣∣∣
β=0

= E′(θ)P. (18)

where we use the identity thatEθ(0) = E(θ). There-
fore, using this relationship, a Levenberg-Marquardt
or Gauss-Newton method, in accordance with the pre-
vious discussion, may be used to solve (6) by comput-
ing a search directionq as

q ∈ {d ∈∆ ⊆ Rnβ : ‖E(θk)− E′
θk

(0)d‖
≤ ‖E(θk)− E′

θk
(0)d̄‖, ∀d̄ ∈ Rnβ},

(19)

wherenβ , rank(P ). This in turn is satisfied by any
q which solves[

E′
θk

(0)T E′
θk

(0) + λI
]

q = −E′
θk

(0)T E(θk). (20)

With this in mind, DDLC based estimation methods
proceed, at iterationk, as follows: 1. Compute the
matrix P from (15); 2. Solve (20) forq; 3. Use this
solution to updateθk according to

θk+1 = θk + αPq. (21)

5. RAPPROCHEMENT BETWEEN FULL AND
DDLC PARAMETRIZED SEARCH

Computing a search directionp via the solution of (11)
or an update directionq via solution of (20) is (rel-
atively) straightforward in the Levenberg–Marquardt



situation, sinceλ > 0 ensures positive definiteness of
the left hand side co-efficient matrix in (11) and (20),
hence the uniqueness of eitherp or q.

However, when a Gauss–Newton search strategy is
employed in whichλ = 0, then this same coefficient
matrix may well be rank deficient in the case of poor
input excitation. It will certainly be rank deficient in
the situation where the search directionp pertaining
to a fully parametrized search direction is sought.

The need to deal with this sort of rank deficiency
is well recognised in the general theory of gradient
based optimisation. In particular, it is routinely han-
dled by the employment of a pseudo-inverse (Golub
and Loan, 1989, Section 5.5.3) of the possibly rank
deficient co-efficient matrix. The ensuing scheme is
denoted as a robust Gauss–Newton strategy to signify
that rank deficient and full-rank cases are handled si-
multaneously (Nocedal and Wright, 1999, Chap. 10).

The most common implementation of robust Gauss-
Newton methods employ a singular-value-decomposition
(SVD) of the Jacobian matrix since this allows a
straightforward and computationally robust means to
compute the pseudo-inverse. To provide further detail
on this point, define the SVD ofE′(θ) as

E′(θ) = USV T = [U1, U2]

[
S1 ∅
∅ ∅

][
V T
1

V T
2

]
= U1S1V T

1 .

(22)
Concentrating for a moment of the full parametriza-
tion approach, then using this SVD we can obtain
a solution to (11) for any value ofλ ≥ 0 (i.e.
both Levenberg-Marquardt and Gauss-Newton meth-
ods) according to

p = −V1(S2
1 + λI)−1S1UT

1 E(θ). (23)

This follows since, from equations (11) and (22),p is
required to satisfy (recall thatV T V = V V T = I)

V (S2 + λI)V T p = −V1S1UT
1 E(θ). (24)

Hence, the search directionp given in (23) can be
validated by direct substitution into (24).

Moving to the DDLC case, we will require the follow-
ing Lemma that establishes a connection betweenP
andV1.

Lemma 5.1.Let Q be given by (13) and a corre-
sponding matrixP satisfy the equations in (15). Let
E′(θ) be expressed by its SVD as in (22) and let
rp , rank(P ) and rv , rank(V1). Thenrv ≤ rp,
and V1 = PR for some matrixR ∈ Rrp×rv with
RT R = I andV1 = PPT V1.

Proof: Since Sθ(T ) parametrizes a system that is
input-output equivalent to that parametrized byθ then

E(Sθ(T )) = E(θ). (25)

Therefore, differentiating with respect toT at the
pointT = In provides (recall the definition (13))

E′(θ)S′θ(In) = E′(θ)Q = 0 (26)

and hence, via the singular value decomposition (22)
and the fact thatU1S1 is full-rank

U1S1V T
1 Q = 0 ⇒ V T

1 Q = 0. (27)

Hence, for anyz ∈ R(V1) it follows that z ∈
N (QT ) , {x : QT x = 0}, which from equation (15)

implies thatz ∈ R(P ). Sincez was arbitrary then
R(V1) ⊆ R(P ) which implies thatrv ≤ rp.

Using the above argument, any column ofV1 can
be expressed as a linear combination of the columns
of P , hence the expressionV1 = PR. Further-
more, sincePT P = I and V T

1 V1 = I then I =
V T

1 V1 = RT PT PR = RT R. Moreover, since
PT V1 = PT PR = R thenV1 = PR = PPT V1.

2

This result allows us to express the DDLC based
search direction in terms of the SVD (22) as follows.

Lemma 5.2.The search directionq given by

q = −P T V1(S2
1 + λI)−1S1UT

1 E(θ). (28)

satisfies equation (20) for allλ ≥ 0.

Proof: According to equations (18) and (22), and
using the properties thatPT P = I andV V T = I
we can express (20) as

P T V (S2 + λI)V T Pq = −P T V1S1UT
1 E(θ). (29)

Substituting forq using (28) and exploiting the iden-
tities thatRT R = I, R = PT PR = PT V1 and
V1 = PR = PPT V1 we get

P T V (S2 + λI)V T Pq = −P T V (S2 + λI)V T P

×P T V1(S2
1 + λI)−1S1UT

1 E(θ),

= −P T V1S1UT
1 E(θ).

2

These results now deliver the main technical result of
this paper.

Corollary 5.1. Let Q be given by (13) and a corre-
sponding matrixP satisfy the equations in (15). Let
E′(θ) be expressed by its SVD as in (22) and letp and
q be given by (23) and (28) respectively. Then the full
parameterisation and DDLC parameterisation search
directions coincide. That isp = Pq.

Proof: From Lemma 5.1 we know thatV1 = PR =
PPT V1. Therefore,Pq may be expressed as

Pq = −PP T V1(S2
1 + λI)−1S1UT

1 E(θ),

= −V1(S2
1 + λI)−1S1UT

1 E(θ) = p.

2

The significance of this result is that, since it estab-
lishes thatp = Pq, the search update (9) ofθk+1 =
θk + αp using a fully parametrized model, and the
search update (21) implied by a (locally minimal)
DDLC parametrization ofθk+1 = θk + αPq are
identical.

As a consequence, gradient search employing a DDLC
parametrization can be viewed as being a special case
of gradient search using a full parametrization where
any ensuing rank deficiency in the JacobianE′ is
accommodated via a pseudo-inverse.



6. AN EXTENDED GAUSS–NEWTON
APPROACH

The arguments of the previous section depended on
the singular value decomposition (22) of the predic-
tion error vector JacobianE′ where it is assumed that
S1 is a diagonal matrix with strictly positive entries.

The preceding sections have considered the DDLC
approach where, according to Theorem 5.1, it is recog-
nised thatS can have no more thannθ − n2 non-zero
entries. However, if the input excitation is poor, for
example, then even in case of employing DDLC,S
may have less thannθ−n2 non-zero entries, and hence
some sort of on-line determination of the effective
non-zero singular values inS is necessary.

This will involve a thresholding procedure, and in de-
termining how this should be decided, it is important
to recognise that if columns ofV1 are retained which
correspond to singular values which are positive, but
very small, then this entails a consideration of search
directions which may well have negligible effect on
the cost function.

Motivated by this, and the results of the preceding sec-
tion which have established that DDLC-based gradi-
ent search corresponds to a particular (fixed) choice of
singular value truncation, the remainder of this paper
proposes and profiles an extended approach whereby
the truncation point is chosen on-line and adaptively.

In particular, with the notation that the diagonal entries
of S1 are denoted as a sequence{µ1, · · · , µk}, this pa-
per proposes to adaptively truncate them by restricting
the singular value spreadµr/µ1 (for somer ≤ k) to
some small valueγ; more precisely, given some small
valueγ then chooser such thatµr < µ1γ.

Moreover, this paper proposes thatγ be changed on-
line according to the size of the previous step length
α according to the following reasoning. Ifα = 1
on the previous iteration, then the algorithm is likely
to be close to a local minima so the singular value
spreadγ is decreased. Vice-versa, ifα < 0.55 (cor-
responding to five bisections of the step length) thenγ
is increased.

The intuition underlying this approach is that it
is worth focusing attention on directions in which
‖E(θ)‖ is sufficiently sensitive to changes inθ, and it
is worth ignoring overly flat “valley” directions. The
precise details of how this paper proposes these ideas
be implemented are encapsulated in the following al-
gorithm definition.

Algorithm 1. Robust Gauss–Newton based search:Given an
initial guessθ0, initialise αmin = 0.55, γ = 10−4, and iterate
the following steps starting withk = 0.

(1) Determine the prediction error vector JacobianE′(θk);
(2) Compute the singular value decomposition

E′(θk) = USV T = U1S1V T
1 (30)

(3) Find the indexr of the smallest singular value that satisfies
S1(r) > γS1(1).

(4) Let Ur , Vr be the firstr columns ofU1 andV1 respectively
and letSr be a diagonal matrix formed from the the firstr
entries of diag(S1). Compute a search directionp as

p = −VrS−1
r UT

r E(θk). (31)

(5) Initialise the step lengthα = 1 and perform the following
(a) If VN (θk + αp) < VN (θk) then goto step 6;
(b) Otherwise, updateα← 0.5α and goto (a);

(6) If α = 1 then updateγ ← min{10−7, 0.25γ};
(7) If α ≤ αmin then updateγ ← max{S1(1), 2γ};
(8) Setθk+1 = θk + αp and updatek ← k + 1;
(9) Check termination conditions (for example,‖dE(θk)/dθ‖ ≤

tolerance) and stop if satisfied. Otherwise return to step 1 and
repeat.

Empirical study of the performance of this algorithm
relative to existing approaches together with an anal-
ysis of computational requirements now form the re-
mainder of this paper.

7. EMPIRICAL STUDY

Although this paper is primarily concerned with pro-
viding multivariable estimates, we begin with a SISO
example to emphasise that Algorithm 1 provides a
dividend even in simple situations where it might oth-
erwise be thought unnecessary.

More specifically, we begin by considering a scenario
in which data is generated by simulation of the follow-
ing SISO third order system

yt = G(q)ut + vt, G(q) =
1.6q3 + 3.5q2 + 2q + 0.003

q3 + 1.1q2 + 0.7q − 0.05
(32)

The performance of Algorithm 1 with regard to esti-
mating this system is first evaluated via Monte–Carlo
analysis which involves 500 runs over different data
and noise realisations. In each runN = 500 samples
of the input signal and measurement noise were gen-
erated according tout ∼ N (0, 1), vt ∼ N (0, 0.01),
and then500 samples ofyt were found according to
(32). Four algorithms for finding estimates of (32) via
the state-space model structure (1) were then imple-
mented:

(1) Algorithm 1 as discussed above (denoted by
rGN);

(2) Robust Gauss-Newton back-stepping algorithm
(denoted rGN10−4) with a fixed singular-value
tolerance ofγ = 10−4 (this is equivalent to
Algorithm 1 but with Steps 6 and 7 removed);

(3) Robust Gauss-Newton back-stepping algorithm
(denoted rGN10−7) with a fixed singular-value
tolerance ofγ = 10−7;

(4) DDLC based gradient search (denoted PEM) as
implemented via Matlab’s System Identification
Toolbox Version 6.0 (SIT6)pem.m routine.

Within this set of simulations signified by S1, the
initialisation of θ0 was performed both by initial de-
ployment of an N4SID subspace estimation algorithm
(S1a) and by simply using a random value (S1b).
This latter case is included in order to study robust-
ness to initial value and robustness against capture
in local minima. All methods were run for one hun-
dred iterations, unless they terminated earlier due to
‖dE(θk)/dθ‖ ≤ 10−4.

Table 1 then profiles the performance of the various
algorithms mentioned above by showing the number
of failures for each of them, where a failure is defined
to be a situation in which

‖E(θ)‖2 > 1.3

N∑
t=1

‖vt‖2. (33)



Clearly, for the case of simulation S1b, Algorithm 1
is significantly more robust than the DDLC method
where Jacobian subspace dimension is fixed, or when
it is made adaptive in a fixed manner whereby a
constant small tolerance is used to determine when
singular values are essentially equal to zero.

In order to further examine these issues, but on a
broader class of problems, the above Monte–Carlo
scenario was repeated, but this time with a different
randomly chosen3’rd order SISO system on each run.
This trial is labelled as S2 (a and b to denote N4SID-
based and random initialisations). Failures were again
judged according to the criterion (33) and are pre-
sented in Table 1.

This again illustrates, now for a much wider range
of SISO systems, that with good initialisation, Algo-
rithm 1 and DDLC based gradient search offer equiv-
alent performance, while for poor initialisation, Algo-
rithm 1 offers enhanced performance.

Progressing now to the multivariable case of input,
output and state dimensions increased tom = 2,
p = 2 and n = 8, and all other parameters as
in the previous SISO case, the results, denoted as
S3, with epithets a and b according to N4SID and
random initialisation are presented in Table 1. This
provides clear evidence that the conclusions, in terms
of enhanced robustness of Algorithm 1, that arose
from the previous SISO study, apply (it seems with
greater emphasis) in the multivariable case which has
been the main impetus for this paper.

Given this evidence, it seemed worthwhile to pursue
it further by increasing input, output and state dimen-
sions tom = 3, p = 3 and n = 18 and denoting
the results as S4 (a and b for N4SID and random
initialisation). These results comprise the final entries
of Table 1.

In particular, we note that consideration of the row
labelled S4a in Table 1 indicates that, for a higher
dimensional system (18 state, 3 inputs/outputs), and
even for a “good” N4SID initialisation, use of Algo-
rithm 1 may reduce a12.4% (subsequent) failure rate
for a DDLC-based method to zero.

As to the overall utility of this algorithm, the question
of convergence rate deserves consideration. To this
end, a further simulation study, denoted by S5, was
conducted with input, output and state dimensions
given by m = 2, p = 2 and n = 8 respectively
(as in simulation S3). A fixed system and a fixed
initialisation point were chosen once, and randomly,
and used for every simulation run. Only the input
excitation was chosen randomly for each simulation,
as described in previous simulations.

The number of failures, presented in Table 1 corre-
sponding to row S5, is seen to be relatively low for
three of the four algorithms, and we conclude that
this system is not inherently difficult to estimate from
the given initialisation point. Figure 1 presents the
average prediction error cost, excluding failures, at
each iteration and we conclude that, for this particular
simulation, not only is Algorithm 1 more robust, but
has the fastest convergence rate.

rGN rGN10−4 rGN10−7 PEM
S1a 0 0 0 0
S1b 34 43 169 435
S2a 0 0 0 2
S2b 8 17 156 69
S3a 0 0 0 4
S3b 3 12 241 162
S4a 0 0 2 62
S4b 12 12 331 414
S5 0 8 197 13

Table 1.Number of failures for different algorithms
(columns) under different conditions (rows).
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Fig. 1. Average prediction error cost for rGN, rGN10−4,
rGN10−7 and PEM algorithms for simulation S5.

8. CONCLUSION

In this paper it is shown, under mild conditions, that
when using a full-parameterisation method, the strat-
egy of data-driven-local-coordinates (DDLC) is iden-
tical to a more widely known strategy in the optimisa-
tion literature of using Jacobian pseudo-inverses. The
utility of this observation is that it informs the devel-
opment of a new algorithm developed here that uses
a strategy of dynamic Jacobian rank determination,
which, via empirical analysis, is illustrated to offer
enhanced performance.
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