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Abstract: This paper proposes a discrete-time adaptive model predictive control
(MPC) algorithm for a class of constrained linear time-invariant systems, which
updates the estimation of system parameters on-line and produces the control input
subject to the given input/state constraints. This method is based on a robust MPC
algorithm using comparison model which enable us to estimate the prediction error
bound of uncertain systems and an adaptive mechanism. First, a new parameter
update method based on the moving horizon estimation is proposed, which allows us
to predict the worst-case estimation error bound over prediction horizon. Second, we
propose an adaptive MPC algorithm developed by combining the on-line parameter
estimation with MPC method based on the modified comparison model. This method
guarantees the feasibility and stability of closed-loop systems. Copyright © 2005
IFAC
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1. INTRODUCTION

Model predictive control (MPC) is one of the most
promising ways to handle control problems for the
systems having input/state constraints (see e.g.
Mayne, et al., 2000). It determines the input sequence
by solving on-line, at each time step, a finite horizon
optimization problem based on the system model and
subsequently only the first control in this sequence is
implemented. Therefore the model quality plays a
vital role in MPC, but in reality there always exist
model uncertainties and these may cause a large
effect on the system performance.

One way to cope with such problems is to develop
robust MPC methods, which guarantee certain
control performances against modeling uncertainties.
Several different robust MPC schemes have been
proposed for many years (Badgwell, 1997; Kothare,
et al., 1996; Lee and Kouvaritakis, 2000). In this line
of research, the system model is fixed though its
uncertainties are taken into account explicitly.
Therefore, its control performance is limited by the
quality of the fixed (initial) model.

Another attractive way to handle model uncertainties
in MPC is to update the system model on-line based
on measurement data. Although the development of
adaptive type MPC scheme is one of the research
issues for the control of constrained systems, there
have been few reports on this topic so far (Mayne, et
al., 2000). One of the main reasons for this is the
difficulty to guarantee the fulfillment of system
constraints in the presence of adaptive mechanism
through the receding horizon strategy. In order to
overcome that problem, we have to estimate the
future behavior of real system while updating the
system parameters on-line. In addition, it seems to be
extremely difficult to guarantee both feasibility and
stability theoretically when we adopt any adaptive
approaches in MPC.

The purpose of this paper is to develop a discrete-
time adaptive MPC algorithm for a class of
constrained linear time-invariant systems, which
updates the estimation of system parameters on-line
and produces the control input satisfying given state
and input constraints for possible parameter
estimation errors. The key idea of this paper is based



on the adaptive MPC algorithm for a class of
continuous-time constrained linear systems proposed
by Kim, et al. (2004), that is, the combination of the
robust MPC method (Fukushima and Bitmead, 2004)
and a new parameter estimation method suitable for
discrete-time MPC.

First, a new parameter estimation method based on
the moving horizon estimation is proposed. This
method allows us to predict the worst-case estimation
error bound over prediction horizon, with which the
future model improvement can be taken account of.
Then it is shown that the proposed estimation method
can be incorporated into robust MPC method
(Fukushima and Bitmead, 2004), which can handle
state-dependent  disturbances, by modifying the
comparison model to handle the time-varying
parameter estimation errors. Using such comparison
model, the original MPC problem based an uncertain
model can be transformed into a nominal one without
uncertain parameters. Finally, a numerical example is
given to demonstrate the effectiveness of the
proposed method. In this paper, only noise-free case
is considered.

Notation: The symbol x; denotes the ith element of
a vector x. Let [[ x| and | x||, denote the Euclidean
and p-norms of a vector x. Let (M) denotes the
largest singular value of matrix M. The maximum
and minimum eigenvalues of matrix M are denoted
by A(M) and A(M) , respectively. The notation
M =0 means that M is a symmetric positive definite,
and M'? denotes the unique positive definite square
rootof M >0.

2. PROBLEM FORMULATION

Consider the following constrained linear time-
invariant system in controllable canonical form:

x(t+1)= A" x(1) + Bu(r), x(0)=x 1
where
* an
A0 =] ,B=[ 0 - of
n-1 : 0
and 0" = (a;,-+,a,)" denotes uncertain parameter

vector. The constraints for measurable state
x(t)e R" and control input u(f)e R, which are
fulfilled at all time instants ¢ > 0, are given as
x)e X, X={x(®)eR":|x0) |y, Vi}, @)
u)eU, U={u(t)e R:|u(t)|<n}

We assume that the following z(¢) is measurable
(1) =6 x(r) (3)

and the initial estimate 6, of 8" and its estimation
error bound v, satisfying

16, -6" <V, (4)

are given. We also assume that given KOT € R" and
P >0 satisfy the similar assumptions to those used
in Kim, et al. (2004) as follows:

Assumption 1: 1< [A(P) miny,,| K{ |<\JA(P) 1

|_AQ)  TPBY,
Assumption 2: Z(P) JAP) ’

Q=P—F"PF, F:= A,)+BK,

Note that Assumption 1 implies that the given
feedback control u(t)=K,x(¢) always satisfies the
given constraints in the following set.

X, ={x(e R":V(x) <1}, V(x) =x"Px (5)

Assumption 2, on the other hand, implies that X , is
a robustly invariant set by u(f) = Kyx(¢) (Blachini,
1999; Fukushima and Bitmead, 2004; Kim, et al.,
2004)).

Under these assumptions, our goal is to construct a
discrete-time adaptive MPC algorithm, which obtains
the estimate 6(r) of 8" on-line and steers the state
x(¢) to the origin without violating the constraints.

3. NEW ADAPTIVE PARAMETER ESTIMATION
ALGORITH FOR DISCRETE-TIME MPC

In this section, we propose the following recursive
parameter update algorithm, which is more
compatible with robust MPC than the conventional
methods and a less conservative approach for
adaptive MPC. We define f(7):=0 for 7<0. The
estimation horizon N, is a design parameter. The
parameter update algorithm at the current time ¢ is
described as follows. =0 and x are design
parameters.

Step 0: At the update starting time ¢, initialize ¥,
cy(ty) and c. () as follows and go to Step 3.

7=y 2 (OTy(1))
tg—N,+1 to=N,+1
() =1, - & Zx(s)xr(s) / [a+ ZxT(s)x(s)]
(6)

s=ty s=t

1o=N, +1 to—N, +1
o)=Y x()x" () / [m ZxT(s)x(s)]

s=t s=ty

toy—N,+1 ty—N,+1
cilt) = Y x(s)z" (s) / {m Zx%s)x(s)]

s=t, s=t

Step 1: If 7 <A (IT" (NII(r)) , update c,(r) and

c,(t) as follows and go to Step 3. Otherwise, go to
Step 2.



e =cyt=1), c.()=c.(t-1) %)

Step 2: Update 7 , c,(¢) and c.(¢) using (6) and
then go to Step 3.
Step 3: Apply the following parameter update law.

0() =0t - +x(c.(1)—cs (DO -1)) ®)

At the next time instant, go to Step 1.

It is important to note that one of the differences from
conventional update laws is to use the summation c,
and ¢, over the estimation horizon N, . Another
difference is that Step 1 above aims at choosing the
“best” data set for parameter estimation in terms of
the excitation of x(7) over the horizon.

The value of ¥ determined in the above algorithm at
time ¢ satisfies

A7 (1) 11(z;)) 9)

7 = min

tyst; <t
where #; denotes the time step of MPC. We define
the parameter estimation error as () := 9(t)—9*.
Although || @(t+k)|| over the prediction horizon of
MPC is unknown, its upper bound v, , can be
predicted as follows:

Vick+l = 7_/Vt+k|t > Vi = v(®), k=0,1,---,N-1 (10)

where v, denotes the predicted value of upper
bound of parameter estimation error at the current
time ¢ and N denotes the length of prediction
horizon of MPC. The predicted v, satisfies the
following lemma.

Lemma 3 The parameter estimation error bound
satisfies

||§(t+k)||£v,+k‘,, k=0,1,---,N 11

This result shows that we can take account of the
future improvement of 6(¢) by using v, over the
prediction horizon. Moreover, (9) and (10) show that
the proposed algorithm tries to choose the “best”
estimate @(¢) in the sense that the predicted error
bound v, is minimized more rapidly than that of
the previous time instant.

Remark 1: The proposed estimation algorithm
requires the additional computational burden such as
the computation of the smallest eigenvalue in Steps 1
and 2 as compared with the conventional estimation
algorithm. However, since its computational burden
may be much less than that of MPC, the proposed

method could be implementable in many applications.

Similarly to the existing robust MPC methods
(Bemporad, 1998; Fukushima and Bitmead, 2004;
Kim, et al., 2004), we adopt the following feedback
control

u(t) = K(6(t))x(t) + i (t) (12)

which consists of feedback gain K(6(¢)) and open-
loop trajectory u(¢). The key difference from other
approaches is that K(6(¢)) depending on 6(¢) is
updated at each time step of MPC as follows:

K@) =-6"(1)+6] +K, (13)

Substituting (12) into (1) results in the following
equation.

x(t+1) = Fx(t) + Bi(t)— Bd(t), d(t) = 8" (t)x(t) (14)

Since we know the upper bound v, of || 7 (t+k)||
as in (11), the disturbance, the effect of parameter
uncertainty, d,,;, is bounded as follows:

d(t+kye D, k=0,1--,N-1,

15
D={de R da+h)|<vy [ xc+byly

Therefore, the robust MPC method (Fukushima and
Bitmead, 2004) is applicable to the system in (14).

The proposed adaptive MPC algorithm is composed
of two methods, one which estimate the uncertain
parameters using the proposed algorithm in this
section and another one, the modified robust MPC
method, described in the next section.

Remark 2: The conventional parameter estimation
method (Astrém & Wittenmark, 1995; Krstic, et al.,
1995), which is described as

Kx(t)
a+x" (H)x(f)

0(t)=6(t-1)+ @) -x" (6@ -1)
could be incorporated into a robust MPC method.
However, this method makes the MPC problem too
conservative in the sense that the possible model
improvement in the future cannot be considered. In
other words, the error bound v, is fixed over the
prediction horizon of MPC, although the estimation
error bound |[@(¢+k)| could be decreased by
parameter estimation.

4. MODIFIED ROBUST MPC ALGORITHM

We predict the state x(z+4k) of (1) and (14) based on
the nominal model such as

£t+k+l\t =A6,(1+ k)))%t+k|t + Bl';z+k|t >

. (16)
g =x(), k=01, N~1.

where X,,;, and 6,(¢+k) denote the predicted value
of x(z+ k) and the estimated parameters based on (8)
at the current time step ¢, respectively. The predicted
control #,,;, in (16) has the following form as
mentioned in Section 3.

ﬁt+k\t =K(6, (t+k))5et+k\t +1’7t+k|t (17)



Substituting the control law (17) into the system (16)
results in the following equation.

Xprkrtie = F Xpopge + By gy (18)

It is necessary for the robustness analysis of closed-
loop to evaluate the prediction error bound of X,
due to disturbance d(t+k) caused by the parameter
estimation error. Moreover it is also required to
derive constraints for X, and i, , which
guarantee that the constraints in (2) for real system
are also satisfied. However, since the estimation error
d(t+k)e D depends on the state x(z+k) of real
system as in (15), it is difficult to evaluate the
prediction error from only the nominal model in (18).

In order to overcome this difficulty, we now
introduce the following additional scalar system,
comparison model, into the optimization problem of
MPC. This system is constructed based on a priori
information on the estimation error bound in (11) as a
similar method described in Kim, et al. (2004) and
Fukushima and Bitmead (2004) as follows:

Weklie = Qi Werkie T 0 el Wy =V (x(2)),

Q) | TP BV, L (19
= —_= _ b = PzB
Dkfe /7.(P) + &(P) I [

This comparison model enables us to obtain an upper
bound of the future value of V' (x), as shown in the
following lemma.

Lemma 4 For any i,y , the states of comparison
model in (19) and real system in (14) satisfy

Vxt+ k) SWgys k=01 N (20)

Once we found the model for predicting an upper
bound w,,, of V(x), the constraint sets X and U
for X, and ., depending on v, and w,,,
can be derived as follow:

X(t +k+ 17Vt+k+1\ts Wt+k+1\t)
={Xe R":| X Sy, -y (t+k+ LV kst Wer ke )s Vi
U +KVyihes Wesre)

=A{KoX+u € R:| KoX+1 |Sn =1+ K Vg W)}

where

k
n k+1 _ Visk+l=st Wek+1-st
itk Ly wy) = D | §ls) |

o VA(P)

Nt +k VW) = Vi +Vo) (200 +1713) +11;

k
7 v —slt Witk—s )
M +kv,,w,)= z” E(s) || kol Deksi)

=0 VA(P)

k
R Vst With—
Bt 4l vy wy) = )| Kob(s) | ==t
5=0

VA(P)

2D

Ay (VW) = Wiy [AJAP)
s F7'B, fors#0 2
=F"B, =
¢(s) &(s) {0  fors=0

and {;(s) denotes the ith row of (s).

The constraint sets modified by X and U above and
two scalar systems (10) and (19) satisfy the following
properties.

Theorem 5 For a given x(t)e R", any open-loop
trajectory ﬂﬁk‘t, k=0,---,N—1, which satisfies
)Act+k+1|t = F)Acz+k|t + Bﬁt+k\z’ ;Ct\[ =x(1)

Vit =V Visrger Vo = v(t)

Wikl = Yk Weakpe T bl Et+k\t ls Wie = V(x(1)) (22)
Xpsk+1r € )A((t +h+ LV, Weak+1)

KoX sk + Uiy € U(t TV kg Weakie)

also satisfies the constraints for real system in (1)

xt+k+l)e X,
K@,t+k)x(@t+k)+u(@+k|)eU

for all possible d(t+k)e D.

(23)

Based on Theorem 5, the optimization problem for
the proposed adaptive MPC method is described for a
given diagonal matrix R >0 as follows:

Optimization problem for MPC:

N-1
mﬁinJ(x(t),ﬁth) = leiklt Ry,

k=0
subject to (22) and (24)

Wk SO, Wy S1, k=0, 1, N-1.

In (24), the finite-horizon optimal control problem
without the disturbance term due to parameter
estimation error is solved from the measured state
x(¢) at the current time instant ¢ It is easily verified
from Theorem 5 that, if the problem in (24) is
feasible at each update time, the given constraints are
always satisfied.

In (24), the additional constraints for w, ., were
introduced to guarantee the feasibility at each time
instance. The constant @ is a number satisfying
w=2max{lV(xy),l} and the terminal condition
W,y S 1guarantees x(k+N)e X, for real system.
Although @ is desired to be as large as possible for
the feasibility at the current time instant, the value of
w at the next time instant should be bounded to
guarantee the feasibility, which is verified in Section
5.



Remark 3: The third constraint in (22) is a nonlinear
equation of i, . By introducing a new variable
Xesk € R, we can modify this constraint to

Wikl = Yk Werke T bZt+k|t

~ (25)
| Uikt |< Xivkles Wi = V(x(1))

and the cost function J(x,upy,) to J(X, ¥rpy) -
Therefore, the modified optimization problem has
only linear constraints and can be solved by standard
quadratic programming (QP) method with free
variables 4, and ¥, -

The algorithm iterating the parameter update in (8)
and the modified robust MPC method in this section
is an adaptive MPC method proposed in this paper.

5. FEASIBILITY AND STABILITY

In order to ensure that the optimization problem in
(24) is feasible at each time step, we need the
following assumption defining the upper bound of
@ , as mentioned in Section 4.

Assumption 1 The given @(=max{V(x,),1}) in
(24) satisfies

(i) wv(t)c; <\ A(P)miny; -1,

. o[(V(0) +vo) (2v(D)cg + D)+ V() e, ]

(ii)
< JAP)- | KL ||

where

N-1 N-1 N-1
¢ = Z{;u {($) s ¢z 0= Z(;H ES) Il ez = ZOJ Ko&(s)|

Note that Assumption 1’ is a sufficient condition for
Assumption 1. If Assumption 1’ cannot be satisfied
for any @w=max{V(x,),1} , we need to consider a
smaller terminal set X , or modify the term K, of
feedback gain in (13). It is also important to notice
that once the state is steered into the robustly
invariant constraint set X ,, the control law in (17) is
completely switched to the feedback law # = K(6,)x,
since it is the optimal control in X , in terms of the
cost function in (24). That is, the control law of the
proposed method converges to the given feedback
law 2 = K(6,)x .

The following Theorem 6 and Lemma 7 describe the
properties of feasibility and stability of the proposed
adaptive MPC method.

Theorem 6 (Stability) Assume the optimization in
(24) is feasible at t =0 for @ which satisfies
Assumption 1°. Then, the proposed MPC method has
the following properties.

(i) The optimization in (24) is feasible at time t >0

—5~ Parameter (theta 1) |

‘Le— P‘ararre‘ter(tre;aZ) I
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41y
405
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Fig. 1. Estimated uncertain parameter €(¢) using (8)
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Fig. 2. Control input u(¢) (solid line) and predicted

trajectory KX, +i, at t=0 (dashed line)

(ii) x(t) converges to the origin as t — oo

The following Lemma 7 is a key result to prove
Theorem 6 and means that if the proposed MPC
problem is feasible at =0, then the problem is
feasible at each time step.

Lemma 7 (Feasibility) Assume the optimization
problem in (24) is feasible at the current time t for
@ which satisfies Assumption 1°. Then, at the next
time step t+1,

- i k=12, N1
Upikle+1 = 0 E= N

could be a feasible solution of (24), where Uy,
denotes the optimal solution at t .
6. NUMERICAL EXAMPLE

Consider the following discrete-time linear time-
invariant system in controllable canonical form:

4 f+] ) 0,0 =[14]" | !
0 x()+ 0 u()s _[7 ] > Xo = —04

We assume the initial estimate 6, of 6 and its
estimation error bound v, as follows:

(t+1) F
X =
1



6, =[0.77, 4.15]", v, =0.275.
The state and input constraints are given as
[x;@®)|<1.0, |u(@®)|<5.0, i=1,2.

A feedback gain K, and matrix P are chosen as

15.0054 —0.0689
K,=[-0.7745 -4.1370], P=

—0.0689 30.0054

We choose the length of prediction horizon N =100
and the terminal set as follows:

X, ={x(t)e R" :V (x(1) £ 0.7}

For an adaptive parameter estimation algorithm, we
choose the estimation horizon N, =10 and other

design parameters & =0.1 and x =1.8.

The convergence of estimated parameters by the
proposed method in Section 3 to their true values is
shown in Fig. 1. In Fig. 2, the solid line shows the
applied control trajectory u(¢f) and the dashed line
shows the predicted trajectory KX, s+, at
t =0, which is obtained by the proposed adaptive
MPC method. This shows that the control input
obtained by the proposed adaptive MPC satisfies the
given constraints. The doted lines show the upper
bound calculated based on the constraint sets X and
U in (22) at time step ¢ =0.0[sec]. These show that,
since the adaptation algorithm is applied in MPC as
shown in Section 4, the parameter estimation error
bound v, and thus 7(t+k,v,,w,) in (21)
become smaller over the prediction horizon. In other
words, the parameter uncertainty is considered
explicitly by the proposed adaptive parameter
estimation algorithm and therefore MPC problem
becomes less conservative as steps passes on. The
trajectory of the state is shown in Fig. 3. This shows
that the trajectory of the state goes into the terminal
set and the state x(¢) converges to the origin as
t—>o0,

7. CONCLUSION

In this paper, we have proposed a discrete-time
adaptive MPC algorithm for a constrained linear
systems with uncertain parameters, which updates the
estimation of system parameters on-line and produces
the control input subject to the given input/state
constraints. In order to construct such an adaptive
MPC method, we first have proposed a new
parameter update algorithm based on the moving
horizon estimation method. It allows us to predict the
worst-case estimation error bound over the given
prediction horizon. We then have incorporated the
above algorithm with the robust MPC method based
on the modified comparison model extended to be
applicable to the time varying-case. Furthermore, we

Fig. 3. Trajectory of the states x;(¢) and x,(¢)

have shown that the proposed algorithm guarantees
the feasibility and stability of the closed-loop
systems in the presence of constraints. Future work
will address the extension of applicable class of
plants, the development of less conservative error
estimation methods and so on.
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