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Abstract: This paper proposes a discrete-time adaptive model predictive control 
(MPC) algorithm for a class of constrained linear time-invariant systems, which 
updates the estimation of system parameters on-line and produces the control input 
subject to the given input/state constraints. This method is based on a robust MPC 
algorithm using comparison model which enable us to estimate the prediction error 
bound of uncertain systems and an adaptive mechanism. First, a new parameter 
update method based on the moving horizon estimation is proposed, which allows us 
to predict the worst-case estimation error bound over prediction horizon. Second, we 
propose an adaptive MPC algorithm developed by combining the on-line parameter 
estimation with MPC method based on the modified comparison model. This method 
guarantees the feasibility and stability of closed-loop systems. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

 
Model predictive control (MPC) is one of the most 
promising ways to handle control problems for the 
systems having input/state constraints (see e.g. 
Mayne, et al., 2000). It determines the input sequence 
by solving on-line, at each time step, a finite horizon 
optimization problem based on the system model and 
subsequently only the first control in this sequence is 
implemented. Therefore the model quality plays a 
vital role in MPC, but in reality there always exist 
model uncertainties and these may cause a large 
effect on the system performance. 
 
One way to cope with such problems is to develop 
robust MPC methods, which guarantee certain 
control performances against modeling uncertainties. 
Several different robust MPC schemes have been 
proposed for many years (Badgwell, 1997; Kothare, 
et al., 1996; Lee and Kouvaritakis, 2000). In this line 
of research, the system model is fixed though its 
uncertainties are taken into account explicitly. 
Therefore, its control performance is limited by the 
quality of the fixed (initial) model. 

Another attractive way to handle model uncertainties 
in MPC is to update the system model on-line based 
on measurement data. Although the development of 
adaptive type MPC scheme is one of the research 
issues for the control of constrained systems, there 
have been few reports on this topic so far (Mayne, et 
al., 2000). One of the main reasons for this is the 
difficulty to guarantee the fulfillment of system 
constraints in the presence of adaptive mechanism 
through the receding horizon strategy. In order to 
overcome that problem, we have to estimate the 
future behavior of real system while updating the 
system parameters on-line. In addition, it seems to be 
extremely difficult to guarantee both feasibility and 
stability theoretically when we adopt any adaptive 
approaches in MPC. 
 
The purpose of this paper is to develop a discrete-
time adaptive MPC algorithm for a class of 
constrained linear time-invariant systems, which 
updates the estimation of system parameters on-line 
and produces the control input satisfying given state 
and input constraints for possible parameter 
estimation errors. The key idea of this paper is based 



on the adaptive MPC algorithm for a class of 
continuous-time constrained linear systems proposed 
by Kim, et al. (2004), that is, the combination of the 
robust MPC method (Fukushima and Bitmead, 2004) 
and a new parameter estimation method suitable for 
discrete-time MPC. 
 
First, a new parameter estimation method based on 
the moving horizon estimation is proposed. This 
method allows us to predict the worst-case estimation 
error bound over prediction horizon, with which the 
future model improvement can be taken account of. 
Then it is shown that the proposed estimation method 
can be incorporated into robust MPC method 
(Fukushima and Bitmead, 2004), which can handle 
state-dependent disturbances, by modifying the 
comparison model to handle the time-varying 
parameter estimation errors. Using such comparison 
model, the original MPC problem based an uncertain 
model can be transformed into a nominal one without 
uncertain parameters. Finally, a numerical example is 
given to demonstrate the effectiveness of the 
proposed method. In this paper, only noise-free case 
is considered. 
 
Notation: The symbol ix  denotes the ith element of 
a vector x. Let |||| x  and px ||||  denote the Euclidean 
and p-norms of a vector x . Let )(Mσ  denotes the 
largest singular value of matrix M. The maximum 
and minimum eigenvalues of matrix M are denoted 
by )(Mλ  and )(Mλ , respectively. The notation 

0fM  means that M is a symmetric positive definite, 
and 2/1M  denotes the unique positive definite square 
root of 0fM . 
 
 

2. PROBLEM FORMULATION 
 
Consider the following constrained linear time-
invariant system in controllable canonical form: 

xxtuBtxAtx =+=+ )0(),()()()1( *θ                   (1) 

where 
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* L=θ  denotes uncertain parameter 
vector. The constraints for measurable state 

nRtx ∈)(  and control input Rtu ∈)( , which are 
fulfilled at all time instants 0≥t , are given as 
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We assume that the following )(tz  is measurable 

)()( * txtz Tθ=               (3) 

and the initial estimate 0θ  of *θ  and its estimation 
error bound 0ν  satisfying 

0
*

0 |||| νθθ ≤−              (4) 

are given. We also assume that given nT RK ∈0  and 
0fP  satisfy the similar assumptions to those used 

in Kim, et al. (2004) as follows: 
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Note that Assumption 1 implies that the given 
feedback control )()( 0 txKtu =  always satisfies the 
given constraints in the following set. 

xPxxVxVRtxX Tn
f =≤∈= :)(},1)(:)({           (5) 

Assumption 2, on the other hand, implies that fX  is 
a robustly invariant set by )()( 0 txKtu =  (Blachini, 
1999; Fukushima and Bitmead, 2004; Kim, et al., 
2004)). 
 
Under these assumptions, our goal is to construct a 
discrete-time adaptive MPC algorithm, which obtains 
the estimate )(tθ  of *θ  on-line and steers the state 

)(tx  to the origin without violating the constraints. 
 
 
3. NEW ADAPTIVE PARAMETER ESTIMATION 

ALGORITH FOR DISCRETE-TIME MPC 
 
In this section, we propose the following recursive 
parameter update algorithm, which is more 
compatible with robust MPC than the conventional 
methods and a less conservative approach for 
adaptive MPC. We define 0:)( =τf  for 0<τ . The 
estimation horizon eN  is a design parameter. The 
parameter update algorithm at the current time t  is 
described as follows. 0≥α  and κ  are design 
parameters. 
 
Step 0: At the update starting time 0t , initialize γ , 

)( 0tcφ  and )( 0tcz  as follows and go to Step 3. 
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Step 1: If ))()(( ttT ΠΠ≤ λγ , update )(tcφ  and 
)(tcz  as follows and go to Step 3. Otherwise, go to 

Step 2. 



)1()(),1()( −=−= tctctctc zzφφ                           (7) 

Step 2: Update γ , )(tcφ  and )(tcz  using (6) and 
then go to Step 3. 

Step 3: Apply the following parameter update law. 

))1()()(()1()( −−+−= ttctctt z θκθθ φ                   (8) 

At the next time instant, go to Step 1. 
 
It is important to note that one of the differences from 
conventional update laws is to use the summation zc  
and φc  over the estimation horizon eN . Another 
difference is that Step 1 above aims at choosing the 
“best” data set for parameter estimation in terms of 
the excitation of )(τx  over the horizon.  
 
The value of γ  determined in the above algorithm at 
time t  satisfies 
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where it  denotes the time step of MPC. We define 
the parameter estimation error as *)(:)(~ θθθ −= tt . 
Although ||)(~|| kt +θ  over the prediction horizon of 
MPC is unknown, its upper bound tkt |+ν  can be 
predicted as follows: 

1,,1,0),(, |||1 −=== +++ Nkttttkttkt Lνννγν    (10) 

where tkt |+ν  denotes the predicted value of upper 
bound of parameter estimation error at the current 
time t and N  denotes the length of prediction 
horizon of MPC. The predicted tkt |+ν  satisfies the 
following lemma. 
 
Lemma 3  The parameter estimation error bound 
satisfies 

Nkkt tkt ,,1,0,||)(~|| | L=≤+ +νθ                      (11) 

 
This result shows that we can take account of the 
future improvement of )(tθ  by using tkt |+ν  over the 
prediction horizon. Moreover, (9) and (10) show that 
the proposed algorithm tries to choose the “best” 
estimate )(tθ  in the sense that the predicted error 
bound tkt |+ν  is minimized more rapidly than that of 
the previous time instant. 
 
Remark 1: The proposed estimation algorithm 
requires the additional computational burden such as 
the computation of the smallest eigenvalue in Steps 1 
and 2 as compared with the conventional estimation 
algorithm. However, since its computational burden 
may be much less than that of MPC, the proposed 
method could be implementable in many applications. 
 
Similarly to the existing robust MPC methods 
(Bemporad, 1998; Fukushima and Bitmead, 2004; 
Kim, et al., 2004), we adopt the following feedback 
control 

)(~)())(()( tutxtKtu += θ                         (12) 

which consists of feedback gain ))(( tK θ  and open-
loop trajectory )(~ tu . The key difference from other 
approaches is that ))(( tK θ  depending on )(tθ  is 
updated at each time step of MPC as follows: 

00)(:))(( KttK TT ++−= θθθ          (13) 

Substituting (12) into (1) results in the following 
equation. 

)()(~:)(),()(~)()1( txttdtBdtuBtFxtx Tθ=−+=+ (14) 

Since we know the upper bound tkt |+ν  of ||)(~|| kt +θ  
as in (11), the disturbance, the effect of parameter 
uncertainty, tktd |+  is bounded as follows: 

||})(||||)(||:{:
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Therefore, the robust MPC method (Fukushima and 
Bitmead, 2004) is applicable to the system in (14). 
 
The proposed adaptive MPC algorithm is composed 
of two methods, one which estimate the uncertain 
parameters using the proposed algorithm in this 
section and another one, the modified robust MPC 
method, described in the next section. 
 
Remark 2: The conventional parameter estimation 
method (Åström & Wittenmark, 1995; Krstic, et al., 
1995), which is described as 

))1()()((
)()(

)()1()( −−
+

+−= ttxtz
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txtt TT
T θ

α
κθθ  

could be incorporated into a robust MPC method. 
However, this method makes the MPC problem too 
conservative in the sense that the possible model 
improvement in the future cannot be considered. In 
other words, the error bound tkt |+ν  is fixed over the 
prediction horizon of MPC, although the estimation 
error bound ||)(~|| kt +θ  could be decreased by  
parameter estimation. 
 
 

4. MODIFIED ROBUST MPC ALGORITHM 
 
We predict the state )( ktx +  of (1) and (14) based on 
the nominal model such as 
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where tktx |ˆ +  and )( ktt +θ  denote the predicted value 
of )( ktx +  and the estimated parameters based on (8) 
at the current time step t , respectively. The predicted 
control tktu |ˆ +  in (16) has the following form as 
mentioned in Section 3. 

tkttktttkt uxktKu |||
~ˆ))((ˆ +++ ++= θ                           (17) 



Substituting the control law (17) into the system (16) 
results in the following equation. 

tkttkttkt uBxFx |||1
~ˆˆ ++++ +=                                      (18) 

It is necessary for the robustness analysis of closed-
loop to evaluate the prediction error bound of tktx |ˆ +  
due to disturbance )( ktd +  caused by the parameter 
estimation error.  Moreover it is also required to 
derive constraints for tktx |ˆ +  and tktu |ˆ + , which 
guarantee that the constraints in (2) for real system 
are also satisfied. However, since the estimation error 

Dktd ∈+ )(  depends on the state )( ktx +  of real 
system as in (15), it is difficult to evaluate the 
prediction error from only the nominal model in (18).  
 
In order to overcome this difficulty, we now 
introduce the following additional scalar system, 
comparison model, into the optimization problem of 
MPC. This system is constructed based on a priori 
information on the estimation error bound in (11) as a 
similar method described in Kim, et al. (2004) and 
Fukushima and Bitmead (2004) as follows: 
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This comparison model enables us to obtain an upper 
bound of the future value of )(xV , as shown in the 
following lemma. 
 
Lemma 4  For any tktu |

~
+ , the states of comparison 

model in (19) and real system in (14) satisfy 

NkwktxV tkt ,,1,0,))(( | L=≤+ +                       (20) 

 
Once we found the model for predicting an upper 
bound tktw |+  of )(xV , the constraint sets X̂  and Û  
for tktx |ˆ +  and tktu |

~
+  depending on tkt |+ν  and tktw |+  

can be derived as follow: 
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and )(siζ denotes the ith row of )(sζ . 
 
The constraint sets modified by X̂  and Û  above and 
two scalar systems (10) and (19) satisfy the following 
properties. 
 
Theorem 5  For a given nRtx ∈)( , any open-loop 
trajectory ,1,,0 ,~

| −=+ Nku tkt L  which satisfies 
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also satisfies the constraints for real system in (1) 
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for all possible Dktd ∈+ )( . 
 
Based on Theorem 5, the optimization problem for 
the proposed adaptive MPC method is described for a 
given diagonal matrix 0fR  as follows: 
 
Optimization problem for MPC: 

.1,,1,0,1,
and (22) subject to
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In (24), the finite-horizon optimal control problem 
without the disturbance term due to parameter 
estimation error is solved from the measured state 

)(tx  at the current time instant t. It is easily verified 
from Theorem 5 that, if the problem in (24) is 
feasible at each update time, the given constraints are 
always satisfied.  
 
In (24), the additional constraints for tktw |+  were 
introduced to guarantee the feasibility at each time 
instance.  The constant ω  is a number satisfying 

}1),(max{ 0xV≥ω  and the terminal condition 
1| ≤+ tNtw guarantees fXNkx ∈+ )(  for real system. 

Although ω  is desired to be as large as possible for 
the feasibility at the current time instant, the value of 
ω  at the next time instant should be bounded to 
guarantee the feasibility, which is verified in Section 
5. 
 



Remark 3: The third constraint in (22) is a nonlinear 
equation of tktu |

~
+ . By introducing a new variable 

Rtkt ∈+ |χ , we can modify this constraint to  
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and the cost function )~,( |tktuxJ +  to ),( |tktxJ +χ . 
Therefore, the modified optimization problem has 
only linear constraints and can be solved by standard 
quadratic programming (QP) method with free 
variables tktu |

~
+  and tkt |+χ . 

 
The algorithm iterating the parameter update in (8) 
and the modified robust MPC method in this section 
is an adaptive MPC method proposed in this paper. 
 
 

5. FEASIBILITY AND STABILITY 
 
In order to ensure that the optimization problem in 
(24) is feasible at each time step, we need the 
following assumption defining the upper bound of 
ω , as mentioned in Section 4. 
 
Assumption 1’  The given })1),(max{( 0xV≥ω in 
(24) satisfies 
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Note that Assumption 1’ is a sufficient condition for 
Assumption 1. If Assumption 1’ cannot be satisfied 
for any }1),(max{ 0xV≥ω , we need to consider a 
smaller terminal set fX  or modify the term 0K  of 
feedback gain in (13).  It is also important to notice 
that once the state is steered into the robustly 
invariant constraint set fX , the control law in (17) is 
completely switched to the feedback law xKu t ˆ)(ˆ θ= , 
since it is the optimal control in fX  in terms of the 
cost function in (24). That is, the control law of the 
proposed method converges to the given feedback 
law xKu t ˆ)(ˆ θ= . 
 
The following Theorem 6 and Lemma 7 describe the 
properties of feasibility and stability of the proposed 
adaptive MPC method. 
 
Theorem 6 (Stability) Assume the optimization in 
(24) is feasible at 0=t  for ω  which satisfies  
Assumption 1’. Then, the proposed MPC method has 
the following properties. 
 
(i) The optimization in (24) is feasible at time 0>t  
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Fig. 1. Estimated uncertain parameter )(tθ using (8) 
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Fig. 2.  Control input )(tu  (solid line) and predicted 

trajectory tt uxK ||0
~ˆ ⋅⋅ +  at 0=t  (dashed line) 

 
 (ii) )(tx  converges to the origin as ∞→t  
 
The following Lemma 7 is a key result to prove 
Theorem 6 and means that if the proposed MPC 
problem is feasible at 0=t , then the problem is 
feasible at each time step. 
 
Lemma 7  (Feasibility) Assume the optimization 
problem in (24) is feasible at the current time t  for 
ω  which satisfies Assumption 1’. Then, at the next 
time step 1+t , 
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could be a feasible solution of (24), where *
|

~
tktu +  

denotes the optimal solution at t . 
 
 

6. NUMERICAL EXAMPLE 
 
Consider the following discrete-time linear time-
invariant system in controllable canonical form: 
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We assume the initial estimate 0θ  of *θ  and its 
estimation error bound 0ν  as follows: 



[ ] .275.0,15.4,77.0 00 == νθ T   

The state and input constraints are given as 

.2,1,0.5|)(|,0.1|)(| =≤≤ itutxi   

A feedback gain 0K  and matrix P  are chosen as 

[ ] 
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=−−=

0054.300689.0
0689.00054.15

,1370.47745.00 PK  

We choose the length of prediction horizon 100=N  
and the terminal set as follows: 

}7.0))((:)({ ≤∈= txVRtxX n
f  

For an adaptive parameter estimation algorithm, we 
choose the estimation horizon 10=eN  and other 
design parameters 1.0=α  and 8.1=κ .  

 
The convergence of estimated parameters by the 
proposed method in Section 3 to their true values is 
shown in Fig. 1. In Fig. 2, the solid line shows the 
applied control trajectory )(tu  and the dashed line 
shows the predicted trajectory tkttkt uxK ||0

~ˆ ++ +  at 
0=t , which is obtained by the proposed adaptive 

MPC method. This shows that the control input 
obtained by the proposed adaptive MPC satisfies the 
given constraints. The doted lines show the upper 
bound calculated based on the constraint sets X̂  and  
Û  in (22) at time step [sec]0.0=t . These show that, 
since the adaptation algorithm is applied in MPC as 
shown in Section 4, the parameter estimation error 
bound tkt |+ν  and thus ),,(ˆ || tt wkt ⋅⋅+ νη  in (21) 
become smaller over the prediction horizon. In other 
words, the parameter uncertainty is considered 
explicitly by the proposed adaptive parameter 
estimation algorithm and therefore MPC problem 
becomes less conservative as steps passes on. The 
trajectory of the state is shown in Fig. 3. This shows 
that the trajectory of the state goes into the terminal 
set and the state )(tx  converges to the origin as 

∞→t . 
 
 

7. CONCLUSION 
 
In this paper, we have proposed a discrete-time 
adaptive MPC algorithm for a constrained linear 
systems with uncertain parameters, which updates the 
estimation of system parameters on-line and produces 
the control input subject to the given input/state 
constraints. In order to construct such an adaptive 
MPC method, we first have proposed a new 
parameter update algorithm based on the moving 
horizon estimation method. It allows us to predict the 
worst-case estimation error bound over the given 
prediction horizon. We then have incorporated the 
above algorithm with the robust MPC method based 
on the modified comparison model extended to be 
applicable to the time varying-case. Furthermore, we  
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Fig. 3. Trajectory of the states )(1 tx  and )(2 tx  
 
have shown that the proposed algorithm guarantees 
the   feasibility   and   stability   of   the   closed-loop 
systems in the presence of constraints. Future work 
will address the extension of applicable class of 
plants, the development of less conservative error 
estimation methods and so on.  
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