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Abstract: In this paper, Nash strategy is applied for controlling an active magnetic
bearing. Different criteria are associated to each input of the dynamical system.
The Nash controls are associated with Coupled Algebraic Riccati Equations. A
state feedback from Nash strategy is designed based on a linearized system. A
comparison of Nash and LQ control, applied to the non-linear system, is proposed
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1. INTRODUCTION

Magnetic bearings are an elegant solution to avoid
mechanical friction and the use of lubrification
for suspending high-speed rotors. There are two
kinds of magnetic bearings, a passive one with per-
manent magnets and an active one with electro-
magnets. The impossibility of controlling perma-
nent magnets leads to the use of active magnetic
bearings to stabilize the position of the rotor. In
addition, for the permanent magnet system (with-
out rotation) the Earnshaw theorem proves that
stable and complete levitation cannot be achieved
by using only permanents magnets (Matsumura
and Yoshimoto, 1986).
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The great number of applications of active mag-
netic bearing explains the diversity of (linear
or non-linear) modeling and control approaches:
backstepping (de Queiroz and Dawson, 1996), flat-
ness (Lévine et al., 1996; Ponsart, 1996), Pulse-
Width-Modulating (Hall, 1990), non-linear bifur-
cation (Mohamed and Emad, 1993), sliding mode
controller (Rundell et al., 1996; Cho et al., 1993)
and LQ-control (Zhuravlyov, 2000). Some of them
need an inboard computer like backstepping, flat-
ness and PWM, or use only one criterion like
LQ-control. Here a game theoretic approach with
Nash strategy is proposed. A state feedback is
designed on a tangent-linearized model and a
criterion is defined for each input. Such control
is then applied to the non-linear model near an
equilibrium point.



2. MAGNETIC SYSTEM MODEL

In this paper, an active magnetic bearing stabiliz-
ing problem in two directions depicted in Fig. 77 is
considered. This system is composed by a planar
rotor disk and two sets of stator electromagnets
(the first set acts on the y-direction and the second
on the z-direction).

For each direction, there is a pair of electromag-
nets, because an electromagnet can only attract
the rotor and cannot repulse it. The rotor is
positioned according to the magnetic forces Fi,
F,, F5 and F; generated by the stator electro-
magnetic circuits. These forces are produced by
the currents iy, 42, i3 and 44 in each stator coil
and these currents depend on the voltages ey, es,
es and e; applied to each stator. The magnetic
circuits have nonlinear inductances L;, Lo, L3
and L4 (because of variables air-gaps) and back-
electromotive forces B, Bs, B3 and By.

The inputs to the magnetic bearing system are
the voltages e;, ez, es and e4. The measurable
signals are the rotor y and x positions, the rotor
7 and & velocities and the currents iy, i, i3 and
i4. This system may be separated in a mechanical
subsystem and an electrical subsystem.

Along the y-direction, the mechanical subsystem
is given by
d?y

m@ = Fi(y,i1) + Fa(y,i2)

where m represents the mass of the rotor, while
the electrical subsystem is given by

o\ di . . .d
L1(y,l1)d—tl + Ryi + B1(y,l1)d—ZZ =e
o di . .d
L2(y,12)d—t2 + Roia + Bz(y,iz)d—i{ =e

where R; and R, are the resistances in the first
set of stator electromagnets.

Assuming that the magnetic circuit is linear (there
is no magnetic saturation) and neglecting fringing
and leakage, the magnetic fluxes ®; and P, in the
air-gaps are given by

. Lot
(I>1(y721)= k—021y

. Lot
(I>2(y722)= k_:_);y

where Loy and k are positive constants depending
on the system construction. This model is only
admissible if the rotor is not in contact with an
electromagnet, that is to say

—k<-go<y<go<k

where gg is the value of an air-gap when the rotor
verifies y = 0. Note that £ > go because we
assume that the permeability in electromagnets
is finite.

The forces F; and F, are given by calculating
virtual work

i1
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The inductances are defined by

. 0P (y,1 L
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and the back-electromotive forces by

. 0P (y,1 2L0%
Bi(y,i1) = 16(:: 1) = (k _02;)2
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Bs(y,iz) = By = (k + 29)?

Combining the equations above, the system in y-
direction is denoted by

Py Lo i\ _Lo( i )’

dt2 m \k—2y m \k+ 2y
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Similarly, along the z-direction, the mechanical
subsystem is given by
d?z

mm = F3(xz,i3) + Fy(z,i4)

while the electrical subsystem is given by

. di . . dx
L3(w,13)d—t3 + Raisg + Bg(;U,Zg)E = e3

di d
L4(.’E,2'4)£ + Ryiq4 + B4(.’L‘,i4)

& _.
dt at —

where R3 and R4 are the resistances in the second
set of stator electromagnets.

Making the same assumptions as for the y-
direction, the system in z-direction is denoted by

1)
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The nominal values of the system parameters are
given in Tab 1.

| Parameter | Nominal Value |

m 2 kg
k 0.0020125 m
Lo 0.0003 H.m
R1 1Q
R 1Q
Rs3 1Q
Ry 1Q

Table 1. System parameters

2.1 Linearized model

The two sets (1) and (2) of physical equations are
independant, even if they have the same structure.
The state vectors are respectively

Z1 Y z5 X
29 ) 2 T
z= = y and 61=1"
z3 1 Vi 13
24 i2 28 iq

for the y-direction and z-direction. The inputs are
voltages e1, ea, e3 and e4. In the following, only
the system on the y-direction is considered. The
non-linear (affine in the inputs) model becomes
from (1):

0 0
Z1 0 0
29 . k—2z e1
Z3 | Lo €2
,é‘4 <k + 221)
0
Lo
22 (3)
Loz \ Lo(_= Y
m\k—=2z/) m \k+2xn
+ k— 221 z3
_( L() R1z3_2(k‘—22{1)z2
k—22 4
—( L() )R2z4_2(k‘—22’1)z2

It was shown in (Ponsart, 1996) that this system
was controllable. In this paper we consider only
the linearized model near an equilibrium point.

The equilibrium points for the system (3) are?

2 There are two other solutions mathematically possible
for z10, but they are not physically possible.

k Rieao — Raeip

210 = 5
2 R1€20 + R2610
220 = 0
o = €10
30 —
Ry
an = €20
40 — &
Ry

Stabilizing the rotor near the position y
imposes the equilibrium point

{

With the notations z; = z;0 + Z; and e; = ejo +
€& 1 <i<4and 1 < j < 2), the tangent
linearization of (3) is

210 =220 = 0
230 =240 = I

&
d—j:A§+Blé1+B2éz (4)
where:
0 1 0 0
813y 203Lo 203
k3 2 k2
A= | "0 e H
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0 0 N
0 0 a1
Bi=| k|, Bo=| o |, 2=|?
Io k “s
0 Lo 24

The system (4) is controllable (the pairs (A, B;)
and (A, B,) are controllable) if and only if the
current Iy # 0. It’s the premagnetization current.

3. A GAME THEORETIC APPROACH

3.1 Expressions of criteria

Each input &; and é; must optimize its own
objective, which is translated in a problem of
minimization of a criterion (respectively J; and
J2). Here the criteria J; and J» can be writen as

+oo
J(~~)—1/ 2TQ§+§ dt
1l€1,€62) = 2 1 R,
oo (5)
Lo 1 T s, 6
Jz(el,ez):— z Q22+— dt
to
where
00 0 0
O0m 0 0
Ql - 00 Ll(zlo) 0f’
0 0



Q2=

The criteria (5) includes the kinetic energy of the
rotor %my’z, the electromagnetic energy in the
air gap 1L;(210)i? and the Joules effect energy
€%/ R; near the equilibrium point (1 < j < 2). For
z10 = 0, we have the relations

L
Li(z10) = La(z10) = ?0

Note that the pairs (v/Q1,4) and (v/Qz,A) are

observable. The aim here is to minimize the con-
trol energy.

3.2 Nash Strategy

The problem formulation is symmetric in the
inputs. The voltages € and é» have the same
hierarchical level. To find a compromise or an
equilibrium, the Nash strategy is chosen. The pair
(é1,€3%) corresponds to a Nash equilibrium (Bagar
and Olsder, 1982; Ho, 1970; Ho et al., 1965) if the
relations for each admissible voltages (€1, és) are
verified:

{ Ji (€1,83) < J1 (é1,8€3) (6)

J2 (€1,€3) < J2 (€7, €2)

At Nash equilibrium (é},€3), the controller j

increases his criteria Jj, if he decides not to use
€5, without cooperation with the other controller.

The necessary conditions for a Nash equilibrium
for criteria J; and Jo (5) with the dynamical
constraint (4) are

OH,
8, 0 .

"7 o, 1<j<2 (7)
Vit

where 1); is the costate vector associed with the
dynamical constraint (4), and H; the Hamiltonian

1 &
]

For this system, (7) leads us to

{ & = —R1 B
& = —RyBT 4y

and

E=AZ - 8191 — Sathn
g1 =—Q1z — AT
Yo = —Q2Z — ATy

or

d V4 V4
T 1 | =N | (8)
P2 P2
with
A =S =85,
N=|-Q, —-AT 0 (9)
Qs 0 -AT

where S; = R;B;B] (1<j<2).

Solutions of (8) are looked for, in particular forms,
if assuming the existence of K; and K> defined by
1 = K1Z and ¢o = K»Z. In the case of criteria
with infinite horizon (5), K71 and K> verify the
Coupled Algebraic Riccati Equations:

ATKl —I— KlA + Ql — Kllel - KngKQ = 0 (10)
ATKy + Ky A+ Qo — K251 K1 — K352 Koy =0

With these commands, the closed loop becomes

dz. 5
d—zt = (A_SIKI —SQK2)ZC (11)

The eigenvalues of (A — S1K; — S2K5) are in-
cluded in the set of eigenvalues of N (8). There
can exist different solutions (K71, K») for the equa-
tions (9). All these solutions can be determined
by the invariants spaces of N (Abou-Kandil et
al., 2003). When it’s possible the dichotomical
solution (the solution which leads to the fastest
dynamic A — S1K; — S2K5) is selected. For the
linearized system (4) the controls are:

{ & = -RBI'K,z, (12)

& = —RyBTK,3,

where Z. is given by (10). Next the voltages &}
and é4 (11) are applied to the non-linear system
(3). The next section presents some numerical
simulations.

4. NUMERICAL RESULTS

First of all, to compare the Nash control, L.Q con-
trol is taken as reference control on the linearized
system

%:ASJF[Bl Bg][z] (13)

and the criterion’s weighting matrices are:
1
I
Q=Q1+Q2, R=|" 4 (14)
0 —
Ry



H denotes the Hamiltonian matrix associated
with the LQ control resolution:

[ A -BR'B*

(15)

The fastest admissible dynamic (10) -called the
dichotomical solution (Jungers and Abou-Kandil,
2004)- is selected to determine K7 and K (9) and
naturally the stable solution of LQ control (Fig 1).
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Fig. 1. Distribution of selected eigenvalues for LQ
and Nash control

The simulation shows the regulation of the posi-
tion of the rotor’s center, with an initial position
perturbation set to y(0) = 0.45¢gp. First, the sim-
ulation was performed assuming exact knowledge
of the parameter values of the system (1).

~ - 1o
—— Nash

Position of the rotor in m

Timeins.

Fig. 2. Position of rotor for LQ and Nash regula-
tion with exact parameter knowledge and an
initial position error y(0) = 0.45¢o.

Notice in the figure (Fig 2) that LQ and Nash con-
trol lead to almost the same response. Moreover
the position stays in the air-gap (—go < y(t) <
go), so these two solutions are admissible for this
initial position error. LQ and Nash controls seem
to lead to equivalent solutions. We propose now to
study these LQ and Nash controls on the system
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Fig. 3. Currents I; and I for LQ and Nash
regulation with exact parameter knowledge
and an initial position error y(0) = 0.45go.

with perturbed parameters. The next simulation
consider a pertubation of +20% on parameters of
(1), except for go.

Position of the rotor in m

Timeins.

Fig. 4. Position of rotor for LQ and Nash regu-
lation with perturbed parameter knowledge
and an initial position error y(0) = 0.45g.
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o
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© 0.06

Time in s.

Fig. 5. Currents I; and I, for LQ and Nash reg-
ulation with perturbed parameter knowledge
and an initial position error y(0) = 0.45go.



Notice in (Fig 4) that with this initial error of
position and this perturbation of 20% of the pa-
rameters, the LQ control is not physically admis-
sible, because the position y(t) is not always in
the air-gap [—go; go]. Inversely the Nash control
is physically admissible, furthermore with smaller
currents (Fig 5) than the LQ control. In this case,
for the considered perturbation of parameters, the
Nash control is more robust than the LQ one.
Nevertheless in our actual knowledge, there are no
general results on the robustness of Nash control.

Finally we present a map of initial error of posi-
tion and velocity corresponding of an acceptable
trajectory for Nash control, assuming that the
currents I; and I are equilibrium currents I (Fig
6).
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Fig. 6. Map of initial error of position and velocity
for an acceptable trajectory for Nash control
for non perturbed system

According to this figure, when there is a big initial
position error, the control is admissible only with
an opposite velocity error.

5. CONCLUSION

In this paper, a game theoretic approach using
Nash strategy is proposed to control an active
magnetic bearing. Multiple inputs on the system
are considered, with separate criterion for each
input. A state feedback, designed by the reso-
lution of Coupled Algebraic Riccati Equations,
associated with Nash strategy is compared with
a LQ control. For exact parameters knowledge,
the simulation results seem equivalent, but for
perturbed parameters, the control derived from
Nash strategy is better than LQ control. In future
work, the trade off between different solutions
of Coupled Algebraic Riccati Equations and the
robustness will be considered.
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