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Abstract: This paper presents a design method for a linear anti-windup filter with
filter pole constraints. The anti-windup design problem can be cast as an LMI
optimization problem. The anti-windup filter is optimized for L2 performance
while its poles are constrained in a predefined region. The constrained poles ensure
the fast recovery of saturation free linear responses and practical implementation
of the anti-windup filter in digital form. This design method guarantees global
stability for asymptotically stable plants, and local stability for plants, which are
not asymptotically stable. The effectiveness of the design method is demonstrated
by a simulation example. Copyright c© 2005 IFAC
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1. INTRODUCTION

It is well known that a linear feedback closed-
loop system may suffer performance degradation
or even instability in the presence of input satura-
tion. Therefore, it is necessary to consider satura-
tion in control design. In linear control design, one
can design a controller by penalizing the control
effort so that the saturation limit is never reached
for any given reference command. However, this
usually leads to a conservative design. For exam-
ple, higher controller gains may be possible for
small reference commands without causing satu-
ration.

An alternative approach to dealing with satura-
tion is to first design a feedback controller without
considering the presence of saturation. Then, an
additional anti-windup filter is designed such that
1) the linear closed-loop system is unmodified in
the absence of saturation, and 2) the closed-loop
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system is stable with small performance degrada-
tion during saturation.

This paper starts with a linear anti-windup
scheme (Teel and Kapoor, 1997; Weston and
Postlethwaite, 1998). This scheme satisfies the
first goal of the anti-windup design. As for the
second goal, the anti-windup filter is designed
to achieve certain L2 performance as suggested
by (Turner et al., 2003; Turner and Postleth-
waite, 2004). Furthermore, it will be shown that
the poles of the anti-windup filter determine the
speed of the unconstrained response recovery.
Therefore, the anti-windup filter is also designed
such that the poles are in a desired predefined
region.

The remainder of this paper is organized as fol-
lows. Section 2 provides the structure of the
anti-windup filter and the problem statement of
the anti-windup synthesis. The solution to the
anti-windup problem is presented in Section 3.
The anti-windup problem with pole constraints is



solved in Section 4. Section 5 gives an example to
illustrate the design method. Finally, conclusions
are given in Section 6.

2. PROBLEM STATEMENT

Consider a linear time-invariant plant P (s) in
state-space form

ẋp =Ap xp +Bp us +Bd d (1)

y =Cp xp +Dp us +Dd d

where xp ∈ Rnp is the state, y ∈ Rny is the
output, us ∈ Rm is the control input, and d ∈ Rnd

is the disturbance input. Let a controller C(s) be
represented by

ẋc =Ac xc +Bc y` +Br r (2)

u` =Cc xc +Dc y` +Dr r

where xc ∈ Rnc is the controller state, y` ∈ Rny

is the controller input, u` ∈ Rm is the controller
output, and r ∈ Rny is the reference input.

Without considering the presence of saturation,
let us = u` and y` = y, then the unconstrained
linear closed-loop system can be obtained as (let
η = [xT

p x
T
c ]T )

η̇ =Acl η +Brcl r +Bdcl d (3)

y` =Cyclη +Dyrcl r +Dydcl d

u` =Cuclη +Durcl r +Dudcl d

where the details of the matrices in (3) are given
in Appendix A. It is assumed that C(s) has
been designed to guarantee the well-posedness,
internal stability, and desirable performance of the
unsaturated linear closed-loop system.

Fig. 1 shows an anti-windup scheme (Teel and
Kapoor, 1997; Weston and Postlethwaite, 1998).
The function sat(·) represents a decentralized
saturation function

sat(u) := [sat1(u1), . . . , satm(um)]T (4)

where sati(ui) = ui/max{1, |ui|
ui,max

}, and ui,max

is the saturation limit for the ith control input.
The structure of the anti-windup filter F (s) is
expressed as (5).
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Fig. 1. Anti-windup scheme
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Fig. 2. Extraction of the deadzone function.

ẋa =Af xa +Bp ũ (5)

v1 =K xa

v2 =−(Cp +DpK)xa −Dp ũ

where Af = Ap + BpK and ũ = us − u. In the
absence of saturation, i.e. ũ ≡ 0, v1 ≡ 0 and
v2 ≡ 0, if the initial condition xa(0) = 0. Then,
the closed-loop system in Fig. 1 behaves as the
unconstrained linear closed-loop system (3).

In the presence of saturation, the nonlinear closed-
loop system in Fig. 1 can be analyzed by replacing
sat(·) with I − φ(·) as shown in Fig. 2, where
φ(u) := u − sat(u) is a deadzone function. The
linear part of the closed-loop system from the
inputs z, r, and d to the signals u`, y`, and u
can be found as

ξ̇ =

[
Acl 0
0 Af

]
ξ +

[
0 Brcl Bdcl

−Bp 0 0

] 

z
r
d


 (6)

y` =
[
Cycl 0

]
ξ +Dyrcl r +Dydcl d

u` =
[
Cucl 0

]
ξ +Durcl r +Dudcl d

u=
[
Cucl K

]
ξ +Durcl r +Dudcl d

with the coordinate ξ = [(xp − xa)T xT
c x

T
a ]T . It

can be observed from (6) that u` and y` are not
affected by z and behave as the signals u` and y`

in the unconstrained linear closed-loop system (3)
as long as the initial conditions xp(0) and xc(0)
are the same as the ones in (3) and xa(0) = 0.
Notice that the signal u can be expressed as

u = u` +K(sI −Af )−1(−Bp)z (7)

Notice also that ũ = −(u − us) = −z. It follows
that the internal stability analysis of Fig. 2 is
equivalent to that of Fig. 3, since the uncon-
strained linear closed-loop system is assumed to
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Fig. 3. Stability analysis



be stable. The output of the nonlinear system in
Fig. 3 is v2. Notice that v2 = y` − y, which rep-
resents the difference between the unconstrained
linear output y` and the saturated output y.
Therefore, Fig. 3 shows how the unconstrained
control effort u` induces the difference v2. It is
desirable to have v2 small in some sense, that is,
to have saturated output y close to the unsatu-
rated linear output y`. As suggested in (Turner
et al., 2003; Turner and Postlethwaite, 2004), the
performance of the anti-windup filter can be eval-
uated by the L2 gain of the operator from u` to v2.
The anti-windup synthesis problem studied in this
paper is to design the filter F (s) (or the gainK) so
that the nonlinear system in Fig. 3 is globally (or
locally) stable with a finite L2 gain of the operator
from u` to v2.

3. ANTI-WINDUP SYNTHESIS

The anti-windup synthesis problem is solved by
utilizing the circle criterion. First, consider a de-
centralized nonlinear function ψ(u). If the non-
linearity ψ(·) belongs to a sector [0,Λ], where
Λ = diag {λ1, . . . , λm} is a diagonal matrix, and
λi > 0, then for any W = diag {w1, . . . , wm} � 0
and u ∈ Rm,

zTW (Λu− z) ≥ 0 (8)

with z = ψ(u). Notice that the deadzone function
φ(·) belongs to the sector [0, I].

Given a sector [0,Λ], where 0 < λi ≤ 1, the
following theorem provides a tool to find the gain
K such that the interconnection of ψ(·) and F (s)
as shown in Fig. 3 with φ(·) replaced with ψ(·) is
globally stable with a finite L2 gain for all ψ(·)’s
belonging to the sector [0,Λ]. Notice that, when
Λ = I, the theorem is the continuous time version
of the result in (Turner et al., 2003).

Theorem 1. Given a sector [0,Λ], where 0 < λi ≤
1, there exists a gain K such that the intercon-
nection of ψ(·) and F (s) is globally stable with
a finite L2 gain for all ψ(·)’s belonging to the
sector [0,Λ], if there exist Q = QT ∈ Rnp×np � 0,
Σ = diag {σ1, . . . , σm} � 0, M ∈ Rm×np , and a
scalar γ > 0 such that

LMI (Q,Σ,M, γ) ≺ 0 (9)

(the details of LMI (Q,Σ,M, γ) are given on the
top of the next page), then K = MQ−1.

Proof : Let V = xT
a Pxa be a Lyapunov function,

where P = PT ∈ Rnp×np � 0. Let W be any
diagonal matrix diag {w1, . . . , wm} � 0. If the
matrix R in (10) is negative definite, it follows

that V̇ + |v2|2−γ|u`|2 < 0 since zTW [Λu−z ] ≥ 0.

V̇ + 2zTW [Λu− z ] + |v2|2 − γ|u`|2

=



xa

z
u`




T 

R11 R12 0

RT
12

R22 WΛ
0 ΛW −γI




︸ ︷︷ ︸
R



xa

z
u`


 (10)

R11 =(Ap +BpK)TP + P (Ap +BpK)

+ (Cp +DpK)T (Cp +DpK)

R12 = − PBp +KT ΛW − (Cp +DpK)TDp

R22 = − 2W +DT
p Dp

Then, it can be concluded that xa = 0 is a
globally asymptotically stable equilibrium when
u` ≡ 0, and ‖v2‖2 <

√
γ ‖u`‖2, when u` ∈ L2 and

xa(0) = 0. Finally, it can be shown that R ≺ 0 if
and only if LMI (Q,Σ,M, γ) ≺ 0 with Q = P−1,
Σ = W−1, and M = KQ (see Appendix B). 2

Finally, the anti-windup synthesis problem is
solved in two cases:

1) When the open-loop plant P (s) is asymp-
totically stable, select Λ = I, and solve the
LMI feasible problem (9) with Q � 0, Σ � 0
and γ > 0 to obtain K. If the LMI feasible
problem is solvable, the anti-windup problem
is solved globally, since the deadzone func-
tion φ(·) belongs to the sector [0, I]. In fact,
the LMI feasible problem is always solvable
in this case. A simple solution is to choose
K = M = 0 ∈ Rm×np . This corresponds
to an internal model control scheme (IMC)
(Zheng et al., 1994). Notice that, although
the synthesis of the IMC scheme is simple, it
can lead to poor performance, if some poles
of P (s) are close to the imaginary axis.

2) When P (s) is not asymptotically stable, se-
lect 0 ≺ Λ ≺ I, i.e. 0 < λi < 1 ∀ i, so
that the LMI feasible problem is solvable.
Fig. 4 shows the intersection of the deadzone
function φ(·) and the sector [0,Λ] for the
ith input. Notice that φi(ui) belongs to the
sector [0, λi] only when |ui| ≤ ui,max

1−λi
. There-

fore, the anti-windup problem is only solved
locally in this case. Finally, it is desirable to
select λi as close to one as possible to enlarge
the constrained range of ui.

4. POLE CONSTRAINTS OF THE
ANTI-WINDUP FILTER

The anti-windup filter found in the previous sec-
tion guarantees that the nonlinear system in Fig.
3 is globallly (or locally) stable with ‖v2‖2 <√
γ ‖u`‖2 for some γ > 0. Furthermore, the perfor-

mance of the anti-windup filter can be optimized
by minimizing γ. However, the method presented



LMI (Q,Σ,M, γ) =




(ApQ+BpM) + (ApQ+BpM)T −BpΣ +MT Λ 0 QCT
p +MTDT

p

−ΣBT
p + ΛM −2Σ Λ −ΣDT

p

0 Λ −γI 0
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in the previous section provides no direct control
over the anti-windup filter poles, i.e. the eigenval-
ues of Af . The poles of the resulting anti-windup
filter may not be in a ”good” region. Notice in Fig.
3 that the poles of the anti-windup filter deter-
mine the transient response of v2 decaying to zero,
when ũ = 0. In other words, the poles of the anti-
windup filter determine the transient recovery of
the unconstrained linear output response y`, when
the actuator is no longer saturated. Therefore,
it is desirable to solve the anti-windup synthesis
problem with the poles constrained in a certain
region. The region is chosen to guarantee that the
transient response is satisfactory and the poles of
the anti-windup filter are not too fast to be prac-
tically implemented in digital control systems.

A region D(α, ρ, θ) as shown Fig. 5 is considered
in this paper. A complex eigenvalue a + j b is in
the region D(α, ρ, θ) if a < −α < 0, |a+ j b| < ρ,
and (tan θ) a < −|b|. It has been shown that all
eigenvalues of Af are in the region D if and only if
there exists an X = XT ∈ Rnp×np � 0 such that
(11)∼(13) hold (Chilali and Gahinet, 1996).

AfX +XAT
f + 2αX ≺ 0 (11)

[
−ρX AfX

XAT
f −ρX

]
≺ 0 (12)

[
sin θ(AfX +XAT

f ) cos θ(AfX −XAT
f )

cos θ(AfX −XAT
f )T sin θ(AfX +XAT

f )

]
≺ 0

(13)

In order for (11)∼(13) and (9) to be tractable in
the LMI context, let X = Q and KX = M , then
(11)∼(13) can be written as (14)∼(16).

(ApQ+BpM) + (ApQ+BpM)T + 2αQ ≺ 0
(14)

D ½

µ

®

Fig. 5. Desired pole region
[

−ρQ ApQ+BpM

(ApQ+BpM)T −ρQ

]
≺ 0 (15)




sin θ((ApQ+BpM) cos θ((ApQ+BpM)

+(ApQ+BpM)T ) −(ApQ+BpM)T )

cos θ((ApQ+BpM) sin θ((ApQ+BpM)

−(ApQ+BpM)T )T +(ApQ+BpM)T )



≺ 0

(16)
It follows that a sufficient condition for the exis-
tence of the gain K to solve the problem defined
in Theorem 1 with the pole constraint D(α, ρ, θ)
is to find Q = QT ∈ Rnp×np � 0, Σ =
diag {σ1, . . . , σm} � 0, M ∈ Rm×np , and a scalar
γ > 0 such that (9) and (14)∼(16) hold.

The anti-windup synthesis problem with the pole
constraint D(α, ρ, θ) can be solved for the two
cases (P (s) is asymptotically stable and P (s) is
not asymptotically stable) as explained at the end
of Section 3.

5. EXAMPLE

This example is adopted from (Grimm et al.,
2002). Consider a mass-spring-damper system

ẋ=

[
0 1

−k/m −f/m

]
x+

[
0

1/m

]
u (17)

y =
[
1 0

]
x

where x = [x1 x2] represents the position and
velocity of the mass, m = 0.1kg is the mass,
k = 1kg/s2 is the spring constant, f = 0.005kg/s
is the damping coefficient, and u represents the
input force exerted on the mass.



Let r be the reference signal for the output y.
Consider the following controller

u=C1(s) (C2(s)r − y) (18)

where the feedback controller C1(s) and feedfor-
ward controller C2(s) are

C1(s) = 200
(s+ 5)2

s(s+ 80)
, C2(s) =

5

s+ 5
(19)

The reference signal r was chosen to switch be-
tween ±0.9 meters every 10 seconds and go back
to zero after 30 seconds. The solid line in Fig.
6 shows the unconstrained linear closed-loop re-
sponse y. The response y tracks the reference r
well with zero steady-state error. A saturation
limit ±1 kg·m/s2 was applied to the input force u,
and the constrained response without anti-windup
compensation is shown by the dotted line in Fig.
6. Clearly, the stability of the closed-loop system
is lost.

Three anti-windup filters were designed in this
example utilizing the methods: 1) IMC scheme,
2) anti-windup synthesis without the pole con-
straints (Section 3), and 3) anti-windup synthesis
with the pole constraints (Section 4). The results
are as following.

1) IMC scheme: K = [0 0]. The time response
is shown by the dash-dotted line in Fig. 6.
Although the constrained closed-loop system
is stable, the time response has very large
oscillations, and decays to the unconstrained
linear response slowly. This is due to the fact
that the poles of the IMC anti-windup filter
are the same as that of the open-loop plant,
which are −0.025 ± j 3.162.

2) Without pole constraints: Λ = I was chosen,
since the open-loop plant is asymptotically
stable. The anti-windup filter (or the gain
K) was obtained by minimizing γ subject
to (9) with Q � 0, Σ � 0 and γ > 0.
The minimization problem was solved by us-
ing YALMIP (Löfberg, 2004) with SeDuMi
solver(Sturm, 2001). The minimal finite gain√
γ was obtained to be 63.25. The time re-

sponse of this case is shown by the dashed
line in Fig. 6. The response approaches the
unconstrained linear response very slowly
without oscillations. The poles of the anti-
windup filter are −1772.69 and −0.031. One
pole is too fast compared to the feedback
controller dynamics, and the other causes the
slow response.

3) With pole constraints: Λ = I, α = 0.02 and
ρ = 9.5 were chosen. Notice that the pole
constraint (16) was not used, since appropri-
ate poles were already resulted from using
only (14) and (15) in this example. The anti-
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Fig. 6. The time response of the output y

windup filter (or the gain K) was obtained
by minimizing γ subject to (9), (14) and
(15) with Q � 0, Σ � 0 and γ > 0. The
minimal finite gain

√
γ was obtained to be

63.25. The poles of the anti-windup filter in
this case are −2.394 and −4.248. The time
response is shown by the bold line in Fig.
6. The response is the best among the three
cases. It approaches the unconstrained linear
response fast and smooth. This confirms the
effectiveness of the proposed approach.

6. CONCLUSIONS

This paper presented a design method for an anti-
windup filter with filter pole constraints. The anti-
windup filter is designed to ensure the stability
and small performance degradation of the closed-
loop system in the presence of saturation, while
the filter poles are constrained in a predefined
region. The anti-windup design problem can be
converted to an LMI optimization problem. This
design method can be applied to stable or unstable
open-loop plants, while only local stability can be
concluded for the plants which are not asymp-
totically stable. Finally, an example was provided
to demonstrate the effectiveness of the proposed
method.
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APPENDIX A

The details of the matrices in (3) are as follows.

Acl =

[
Ap +BpDcE1Cp BpE2Cc

BcE1Cp Ac +BcE1DpCc

]

(20)

Brcl =

[
BpE2Dr

BcE1DpDr +Br

]
(21)

Bdcl =

[
BpDcE1Dd +Bd

BcE1Dd

]
(22)

Cycl =
[
E1Cp E1DpCc

]
(23)

Cucl =
[
DcE1Cp E2Cc

]
(24)

Dyrcl =E1DpDr (25)

Dydcl =E1Dd (26)

Durcl =E2Dr (27)

Dudcl =DcE1Dd (28)

where E1 = (I − DpDc)
−1 and E2 = (I −

DcDp)
−1 exist due to the assumption that the

unconstrained linear closed-loop system is well-
posed.

APPENDIX B

Let

T =



Q 0 0
0 Σ 0
0 0 I


 (29)

then R ≺ 0 if and only if TTRT ≺ 0, since T is a
full rank matrix. With Q = P−1, Σ = W−1, and
M = KQ, TTRT can be found as

TTRT =



Y11 Y12 0

Y T
12
Y22 Λ

0 Λ −γI


 (30)

Y11 = (ApQ+BpM) + (ApQ+BpM)T

+(CpQ+DpM)T (CpQ+DpM)

Y12 =−BpΣ +MT Λ − (CpQ+DpM)TDpΣ

Y22 =−2Σ + ΣDT
p DpΣ

Finally, it can be known that

TTRT ≺ 0 ⇐⇒ LMI(Q,Σ,M, γ) ≺ 0 (31)


