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Abstract: The three main performance metrics in automotive suspensions are
passenger comfort, suspension deflection, and road holding ability. It is well-known
that these three objectives can not be reached at the same time. In order to reach
them “individually”, three linear H∞ controllers are designed. At each moment,
the desired performance requirement is chosen with a robust stable control strategy
that switches between the three linear H∞ controllers. The switched control logic
is not developed in this study. Copyright c© 2005 IFAC
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1. INTRODUCTION

The suspension system is the main tool to achieve
ride comfort and road holding for a vehicle. The
design of a suspension is always based on a
good compromise between these two targets, but
structural limitations (like the suspension deflec-
tion limitation) prevent passive solutions from
achieving the best performance for both goals
(Hedrick, 1990). Originally, this trade-off was par-
tially solved by the single optimal adjustment of
a passive damper (Miller, 1988).
Hence, the development of computer-controlled
suspension actuators has led to many control
strategy designs based on various types of method-
ologies.
In robust synthesis, robust stability and perfor-
mance can be guaranteed in the presence of plant
uncertainties (see e.g. (Sammier et al., 2003)), but
these methods result in a controller which cre-
ates a trade-off between the different performance
specifications, leading to some conservatism. An
LPV method is proposed for a nonlinear model
that guarantees the trade-off between passen-
ger comfort and suspension deflection (Gaspar et

al., 2004), but this method is also conservative
w.r.t. the design of LTI controllers that separately
guarantee passenger comfort or suspension deflec-
tion. In (Altet et al., 2003) the performance trade-
off between ride comfort and road holding is con-
sidered as a hybrid system for a Crone suspension
only.
In this paper, a control design for active sus-
pensions of passenger vehicles is proposed. As
shown in Fig. 1, this control strategy is devel-
oped and analyzed on a quarter-car system model
G(.), and the choice between a ride comfort/road
holding/suspension deflection control strategy is
guaranteed by a robust switched controller K(s, θ)
1 , following the switching method presented in
(Hespanha and Morse, 2002).
Here we consider the relative suspension deflec-
tion 2 has the available measure y(t); z(t) con-
tains the signals to be controlled by the switching
signal θ(t) and the control signal uca(t). z(t) are
the sprung mass acceleration (for comfort control

1 s is the Laplace variable
2 Some technical definitions of an automotive suspension
are given in section 2



objectif), the suspension deflection (in order to
prevent the suspension travel limits), and the tire
deflection (for road holding ability objectif). The
exogenous signal θ(t) can be chosen according to
the vehicle stability and the value of the sus-
pension deflection. The disturbance signal d(t)
is the road profile that must be attenuated in
order to obtained the request performances (ride
comfort/road holding/suspension deflection).

Fig. 1. Switched control configuration.

In automotive applications as suspension or en-
gine control, controllers are often implemented
using static maps. However the stability of the
closed-loop system (subject to the controller
changes) is not proved. Here the switching method
will be proved stable in the active suspension
control problem. The switched control logic (i.e.
the choice of the trajectory of the signal θ(t)) is
not developed in this study.
This paper deals (section 2) with the quarter-car
model of a suspension. In section 3, three linear
H∞ regulators are designed and a new state space
realization is computed to guarantee the closed-
loop system stability defined in Fig. 1. In section
4 some simulation results are presented to validate
the approach.

2. THE QUARTER-CAR MODEL

The two quarter-car models representing a passive
and an active suspension respectively, are shown
in Fig. 2, where ms is the sprung mass (quarter
car body); mus is the unsprung mass (wheel
assembly); Fks(.) and Fkt(.) are the vertical forces
of the suspension and tire springs, respectively;

Fig. 2. Quarter-car suspension model.

Fcs(.) and uca(t) are the vertical forces of the
passive and active suspension shock-absorbers,
respectively; Zs and Zus are the absolute static
displacements of the (loaded) suspension and tire
springs; zs(t) and zus(t) are the relative vertical
positions (around the steady-state displacements
Zs and Zus) of the sprung and unsprung masses,
respectively; z0(t) ≡ d(t) is the road profile. This
model is usually used to analyze and/or to design
suspension control laws; when the objective of
the study is the dynamics of the vehicle, the
suspension models are more complicated (see e.g.
(Zin et al., 2004)).
As mentioned in (Rossi and Lucente, 2004), the
simplest controllers designed from a quarter car-
model can be considered as better than those
designed from more complicated models for their
features of disturbance rejection, robustness and
simplicity.
The dynamic of the nonlinear quarter-car model is
given by the following set of differential equations
(Kiencke and Nielsen, 2000):











































ms z̈s(t) = −Fcs

(

żs(t) − żus(t)
)

+

− Fks

(

zs(t) − zus(t)
)

,

mus z̈us(t) = Fcs

(

żs(t) − żus(t)
)

+

+ Fks

(

zs(t) − zus(t)
)

+

− Fkt

(

zus(t) − z0(t)
)

, .

(1)

Fks(.) and Fcs(.) are nonlinear functions shown in
Fig. 3, while Fkt(.) is approximated by a linear

behavior, i.e. Fkt(t) = kt

(

zus(t) − z0(t)
)

, where

kt is the vertical stiffness coefficient of the tire.
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Fig. 3. Suspension force characteristics.

The model (1) can be written as :

ẋ(t) = fp

(

x(t)
)

+ B1 z0(t), (2)

where the state vector x(t) may be chosen as:



xT (t) =
[

żs(t), zs(t), żus(t), zus(t)
]

.

With reference to Fig. 1 and 2 the following four
models can be considered.

- The nonlinear passive model of reference de-
scribed by (2) is used in section 4 for simulations
in the time domain.

- The nonlinear open-loop active suspension

model, called G(.) in Fig.1, is obtained from
equations (2) where Fcs(.) is replaced by the
active shock absorber force uca(t). It is used in
section 4 for simulations in the time domain.

- The linear passive model of reference ob-
tained by a linear approximation of (2) is used
in section 3 for simulations of the passive system
in the frequency domain. From the linearized
static maps Fsk(.) and Fsc(.), the coefficients of
stiffness ks of the spring and the coefficient of
damping csp of the passive shock-absorber are
found (see Fig. 3). This linear system can then
be written as:

ẋ(t) = Ap x(t) + B1 z0(t), (3)

where:

Ap =







−csp/ms −ks/ms csp/ms ks/ms

1 0 0 0

csp/mus ks/mus −csp/mus −(ks + kt)/mus

0 0 1 0







,

BT
1

=
[

0 0 kt/mus 0
]

.

- The linear open-loop active model used in
section 3 for the designing of the linear H∞ con-
trollers, is the same as (3) where the coefficient
of damping csp is replaced by csa(t) = csa0 +
∆csa(t); csa0 is a positive coefficient and ∆csa(t)
is a signal that can be non positive (note that
in the case of semi-active shock-absorber, the
signal csa(t) is always negative).
The active force is expressed by:

uca(t) = csa(t)
(

żs(t) − żus(t)
)

.

and can be decomposed as:

uca(t) = csa0

(

żs(t) − żus(t)
)

+ u(t), (4)

From (3) and (4), the new linear system can be
written as:

ẋ(t) = Aa x(t) + B1 z0(t) + B2 u(t), (5)

where

Aa =







−csa0/ms −ks/ms csa0/ms ks/ms

1 0 0 0

csa0/mus ks/mus −csa0/mus −(ks + kt)/mus

0 0 1 0







,

BT
2

=
[

1/ms 0 1/mus 0
]

.

As mentioned in section 1, in this study the
suspension deflection is considered as the only
available measure, which corresponds to:

y(t) = zs(t) − zus(t) = C2 x(t), (6)

where

CT
2

=
[

0 1 0 −1
]

.

The various parameters introduced in the previ-
ous equations represent the characteristics of a
“medium” range passenger car with three persons
on board and are given in table 1.

Table 1. Quarter-car model parameters.

ms(kg) = 360 kt(N/m) = 208000

mus(kg) = 37.5 csp(N/m/s) = 3500
ks(N/m) = 30000 csa0(N/m/s) = 2000

Remark 1. The control signal uca(t) given by
(4) requires also to know the deflection velocity

ẏ(t) =
(

żs(t) − żus(t)
)

which can be computed

by cautious numerical derivation of the measure
y(t) (i.e. the suspension deflection) or directly
measured by another sensor. The Fig. 4 shows an
example of the control scheme that requires only
the measure of the suspension deflection y(t).

Fig. 4. Implementation of the control law.

3. SWITCHED H∞ CONTROLLER DESIGN

In this section, the switched H∞ controller Ku(s, θ)
design procedure is presented.
Step 1. Design of LTI H∞ controllers.

Three H∞ controllers are designed for the quarter-
car model (5)-(6),according to the objective to
reach.
If the passenger comfort strategy is looked for,
the first controller is designed to maintain the
vertical acceleration of the sprung mass z̈s(t) as
small as possible (at low/medium frequencies, see
e.g. (Gillespie, 1992; Sammier et al., 2003)). For
a good road holding, the second controller acts

to reduce the tire deflection zdeft(t) =
(

zus(t) −

z0(t)
)

. Otherwise, the third controller is used to

reduce the suspension deflection zdef (t). In addi-
tion to these signals, the force uca(t) provided by



the active shock-absorber must be controlled in
order to prevent the saturation of the actuator.
According to (5)-(6) the signal z(t) to be con-
trolled is selected as:
{

z(t)T =
[

zs(t), zdeft(t), zdef (t), uca(t)
]

,

z(t)T = C1 x(t) + D11 z0(t) + D12 u(t).
(7)

As in the usual H∞ framework, the performance
objectives are achieved via minimizing weighted
transfer function norms. These functions define
the performance specifications in the frequency
domain.The considered scheme of the H∞ control
design interconnection is given in Fig. 5, where
n(t) is the sensor noise (Wn(s) its weight); Wd(s)
is the weight used to scale the magnitude of the
road disturbances; Wz(s) is a diagonal matrix
of the weighting functions applied to the con-
trolled signal (7) which expresses the desired per-
formances and robustness properties, i.e. Wz(s) =

diag
(

Wz0(s),Wcf (s),Wrh(s),Wdf (s),Wuca(s)
)

. The

weighting functions for the three designs are given
in table 2 and Fig. 6.

Fig. 5. H∞ control design interconnection.

Remark 2 The design of the controller is made
by taking in account the noise n(t) for numerical
aspects (see remark 1). In suspension control de-
sign, the measure of the suspension deflection is
not noisy (Savaresi et al., 2004).
Given γ, a prespecified attenuation level, a H∞

suboptimal control problem is to design stabilizing
controllers Ki(s), i = {1, 2, 3}, that internally
stabilizes the closed-loop system and minimizes
the closed-loop transfer norm from the exoge-
nous inputs w(t) to the exogenous outputs e(t):
‖e(t)/w(t)‖∞ ≤ γ.
Here, the H∞ suboptimal control problem is
solved using Riccati equations (see e.g. (Zhou,
1998)).
Remark 3. Instead of controlling the vertical ac-
celeration of the sprung mass z̈s(t) in (7), we have
selected the vertical displacement of the sprung
mass zs(t) which, as we will see, leads to good
performances for z̈s(t).

Step 2. Controllers reduction order.

The controller design described in step 1 leads to
three controllers of order 7 (for comfort design), 6

Table 2. Weighting functions selection.

i Performance Wz0 Wcf Wrh Wdf Wuca

1 Comfort 0.1 T−1

cf
0 0 T−1

cua

2 Road holding 0.1 0 T−1

rh
0 T−1

cua

3 Deflection 0.1 0 0 T−1

df
T−1

cua

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
−4

10
−3

10
−2

10
−1

10
0

10
1

frequency [Hz]

m
ag

ni
tu

de

T
cf

 T
ua

/8000

T
df

T
rh

Fig. 6. Inverse of the weighting functions.

(for road holding design) and 6 (for deflection de-
sign). The controller for comfort design is reduced
to the order 6 by the truncated balanced realiza-
tion method (Skogestad and Postlethwaite, 1996)
which is not necessary but suitable.
Step 3. Switching between controllers.

In this paragraph, realizations of the previous con-
trollers are computed so that the switched closed
loop system of Fig. 1 remains stable, no matter
how we switch among the three controllers.
Let us first present a short background on stability
of systems with impulse effects. For more details,
see (Hespanha and Morse, 2002).
A switched system with state resetting at switch-
ing times, is called a system with impulse ef-
fect. Given the piecewise constant switching signal
σ(t), an homogenous system with impulse effect is
described by:

˙̄x(t) = Āi x̄(t), (8)

on intervals where the switching signal σ(t) re-
mains constant, and by

x̄(t) = R̄
(

σ(t), σ(t−)
)

x̄(t−), (9)

at each switching time t of σ(.). The maps

R̄
(

σ(t), σ(t−)
)

are called reset matrices. Further-

more, the non-homogenous system associated to
(8) is given by:

˙̄x(t) = Āi x̄(t) + B̄i w̄, (10)

on intervals where σ(t) remains constant, and by
(9) at each switching time t of σ(.).
The following Lemma can be stated (Hespanha
and Morse, 2002):
LemmaAssume that there exist real symmetric
matrices Qi, for which



Q̄i Āi + ĀT
i Qi < 0, (11)

and

R̄(i, j)T Q̄i R̄(i, j) ≤ Q̄j , i 6= j (12)

hold. Then the homogeneous system (8)-(9) is
exponentially stable. Moreover, for every switch-
ing signal σ(t) and every bounded piecewise con-
tinuous signal w̄(t), the state x̄(t) of the non-
homogenous system (10)-(9) is bounded.
The way to find new realizations of the three
controllers designed in steps 1-2, for which (11)-
(12) hold true for the switched closed loop of
Fig. 1, is now detailed. The switching controller
is realized as in Fig. 7 where the switched closed
loop is represented. The signals du(t) and dy(t)
are two real bounded exogenous disturbances, one
at the input and the other at the output of the
system (5)-(6), respectively. On intervals where
the switching signal θ(t) remains constant, the
transfer functions Fi(.) is given by:

{

Fi(s) := Ki(s)
(

1 − Ki(s) Ha(s)
)

−1

,

Ha(s) = {Aa, B2, C2, 0},
(13)

where Ki(s) has been found in step 1-2 and Ha(s)
is the system (5)-(6).
At each switching time t of θ(t), the switched
control is given by

xc(t) = Rc

(

θ(t), θ(t−)
)

xc(t
−),

where xc(t) its the state vector of the controller.

Fig. 7. Scheme of the stable realization of the
switched controller.

As discussed in (Hespanha and Morse, 2002), if
Ha(s) is a stable system (which is true for (5)-
(6)), the switched closed-loop system given in
Fig. 7 is stable if and only if the system with
impulse effect F (s, θ) is stable. Furthermore, there
always exist stabilizable and detectable realiza-
tions {Afi, Bfi, Cfi,Dfi}

3 for each stable Fi(s),
such that

Q Afi + AT
fi Q < 0, i = {1, 2, 3},

3 see (Hespanha and Morse, 2002) for the computation

with Q = I. Therefore, from the previous lemma,
one concludes that the new realization of F (s, θ)
is stable in the particular case where Q̄i = Q̄j = I
and R̄(i, j) = I in (11) and (12), respectively.
This corresponds to the multi-controller K(s, θ) =
{Aki, Bki, Cki,Dki, θ} in Fig. 1 with:

Aki :=

[

Aa B2 Cfi

B2 Cfi Afi

]

, Bki :=

[

B2 Dfi

Bfi

]

,

Cki :=
[

Dfi C2 Cfi

]

, Dki := Dfi,

and Rk(i, j) = I.

4. SIMULATION RESULTS

A comparison between the closed-loop frequency
responses of the linear active system and the linear
passive model is shown in Fig. 8 for the suspension
deflection and the acceleration of the sprung mass,
and in Fig. 9 for the bounce of the sprung mass
and the tire deflection.
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Fig. 8. Frequency domain results.

The dashed, dash-dot and dotted lines are the
closed-loop frequency responses that result from
comfort, road holding and suspension deflection
designs, respectively; the solid lines are the passive
linear model frequency response. The three main
performance metrics are achieved individually.
Figures 10 and 11 show a comparison in the time
domain between the closed-loop responses of the
nonlinear active system and the nonlinear passive
quarter-car model (1). The input is the road pro-
file z0(t) is a series of steps of 6 cm of height;
the switching signal θ(t) is constant from 0 to
6− s (selected for comfort performances), and it
changes at t = 6 s for road holding requirements.
We can see that this leads to a different response
for the controlled signal z(t).
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Fig. 9. Frequency domain results.
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Fig. 10. Time domain results.
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Fig. 11. Time domain results.

5. CONCLUSIONS AND FUTURE WORKS

In this paper a switched control method is used to
achieve conflicting requirements of an automotive
suspension. Simulations in the frequency and time
domains show that good results in term of ride
comfort, road holding and suspension deflection
can be obtained while a single design could not
reach the performance specifications.

This emphasizes the interest of this approach that
ensures stability of the switching strategy.
An important issue for future research is the
design of a switched LPV controller in order
to take into account the nonlinearities of the
characteristics of the suspension spring. Note that
the theory developed in (Hespanha and Morse,
2002) can be extended for LPV stable plants.
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