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Abstract: This paper presents an adaptive output regulator. It is an add-on type output
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1. INTRODUCTION

Disturbance rejection is a large and important
topic in control theory. Cancellation of sinusoidal
disturbance is special interest because they com-
monly appear in practice (Sacks et al., 1996). In
(Francis, 1977), Internal Model Principle(IMP)
to reject periodic disturbance was proposed. For
perfect disturbance cancellation, Francis et al.
proposed that controller must have a pair poles
of disturbance. Various approaches based on IMP
have been studied (Hara et al., 1988; Kempf et
al., 1993; Bodson and Douglas, 1997; Knobloch et
al., 1993; Francis, 1977; Shim et al., 2004).

Repetitive control has been shown to be very effec-
tive for rejecting repetitive disturbance (Hara et
al., 1988; Kempf et al., 1993). Its advantages and
disadvantages are well summarized in (Kempf
et al., 1993) based on four different algorithms
used for cancellation of periodic disturbance. Al-
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though repetitive control enables perfect rejecting
of periodic disturbances by employing the inter-
nal model principle with a periodic generator, it
requires the exact knowledge of the period-time
of the external signals. In literature several solu-
tions have been proposed to resolve this problem,
most of them use a supervisory adaptive scheme
by estimating period-time from measuring closed-
loop response (Tsao and Nemani, 1992; Dötch et
al., 1995; Manayathara et al., 1996). In contrast to
the literature, recently a new structure for repet-
itive control is introduced in (Steinbuch, 2002),
which is robust for changes in period-time. How-
ever, this method requires increased number of
memory location. Further it is hard to reject dis-
turbance when the range of uncertain frequency
is wide.

Adaptive feedforward cancellation(AFC) based on
the phase-locked loop technique is also able to
reject periodic disturbance (Bodson and Dou-
glas, 1997). In (Bodson and Douglas, 1997), they
proposed advanced method to reject sinusoidal



disturbances with uncertain frequency. However,
to reject sinusoidal disturbance by AFC, it is
required to computed the gain of plant at all
estimated frequencies. In practice, it is difficult to
obtain the gain and thus this method may not be
easy to apply if the plants are complicated. Fur-
thermore, this method is not applicable even for a
parametric model uncertainty which is acceptable
to the output regulator.

In (Knobloch et al., 1993; Francis, 1977), out-
put regulator perfectly rejecting sinusoidal dis-
turbance is proposed. It is shown that the full
state feedback and error feedback regulator prob-
lems are solvable, under the standard assumptions
of stabilizability and detectability, if and only if
a pair of regulator equations is solvable. Their
proposed method is known to be able to reject
disturbance perfectly even under the parametric
uncertainty of plant model. Recently applying this
idea to the track following problem of optical disk
drive, Shim et al. proposed an add-on type output
regulator assuming that the frequency of distur-
bance is known (Shim et al., 2004). In practice,
the frequency of disturbance is, however, usually
unknown and may even vary during operation of
system.

In this paper, extending this result we propose
an adaptive output regulator to reject periodic
disturbance with unknown frequency. The adap-
tive output regulator consists of add-on type out-
put regulator and adaptive algorithm proposed in
(Brown and Zhang, 2001). The adaptive algorithm
is based on internal model principle (IMP) which
can track frequency of sinusoidal disturbance. By
adding the adaptive algorithm to add-on output
regulator, the output regulator is able to reject
disturbance even though its frequency is unknown
while preserving the advantages of the output
regulator. It is shown that the proposed method is
stable for frequency within a connected compact
set. Its stability is proven under the assumption
that the frequency of disturbance varies slowly in
time. Its performance is verified with simulation
and experiment results. Finally, we observed that
there was a good agreement between simulation
and experiment results.

2. ADAPTIVE OUTPUT REGULATOR

We construct an adaptive output regulator for
generic linear systems and disturbance written by

ẋ = Ax + Bu + Pw,

e = Cx + Qw,
(1)

ẇ = Sσw, Sσ =

[
0 1

−σ2 0

]
, σ ∈ Σ ⊂ R>0 (2)

where x is the state, u is the control input, w
is the periodic disturbance and Σ is a connected
compact set. We suppose that the error e can be
measured while the state x is not measurable, dis-
turbance frequency σ is unknown and the initial
condition w(0) ∈ W ⊂ R

2, which is connected and
compact.
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Fig. 1. Schematic of control system. P (s): plant,
C(s): pre-designed stabilizing control, R:
adaptive output regulator, F (u): adaptive al-
gorithm, R(e, u, σ̂): output regulator.

Our control goal is to design an error feedback
controller so that the closed-loop system in Fig.
1 is asymptotically stable and the error e(t) goes
to zero as time goes to infinity. In our approach,
the goal of closed-loop stability is achieved by
the controller C(s) while the goal of asymptotic
disturbance rejection is gained by the adaptive
output regulator R. In particular, we propose a
design method for R assuming that the controller
C(s) is pre-installed and that we do not know any
information about C(s) except that it stabilizes
the plant P (s) when there’s no disturbance.

We adopt the add-on type output regulator pro-
posed in (Shim et al., 2004). It was shown that
the controller achieves asymptotic disturbance re-
jection (i.e., perfect rejection) if the Assumption
1-2 proposed in (Shim et al., 2004) are satisfied.
The following assumptions are extension of the
assumptions.

Assumption 1. For the plant (1) with w ≡ 0,
there exists a dynamic controller C(s), whose
realization is given by

ż = Fz + Ge,

uc = Hz + Je
(3)

which stabilizes the closed-loop system. In other
words, the matrix

[
A + BJC BH

GC F

]

is Hurwitz. 3

Assumption 2. The following two conditions
hold.

(1) There exist matrices Πσ and Γσ such that

ΠσSσ = AΠσ + BΓσ + P, (4)

0 = CΠσ + Q (5)

for all σ ∈ Σ.
(2) The matrix pair

(
[C Q] ,

[
A P
0 Sσ

])

is detectable for all σ ∈ Σ.
(3) The pair (A,B) is stabilizable.

3

The adaptive output regulator consists of a fre-
quency adaptation algorithm F (u) and output
regulator R(e, u, σ̂) as illustrated in Fig. 1.
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Fig. 2. Adaptive Algorithm F (u)

2.1 Design of Output Regulator R(e, u, σ̂)

The output regulator R(e, u, σ̂) consists of a state
observer and a state feedback gain (Shim et al.,
2004). Then, the controller can be rewritten by

ξ̇ =

(
A − K1C P − K1Q
−K2C Sσ̂ − K2Q

)
ξ +

(
K1

K2

)
e +

(
B
0

)
u,

ur = (0 Γσ̂) ξ
(6)

where σ̂ ∈ Σ (σ̂ is the estimated value of actual
disturbance frequency σ) and Γσ̂ is the solution
to (4) and (5) given Sσ̂. Now to design the output
regulator (6), we need the following assumption.

Assumption 3. The observer gain K1 and K2 in
(6) are designed such that

{[
A P
0 Sσ̂

]
−

[
K1

K2

]
[C Q]

}
(7)

is Hurwitz for all σ̂ ∈ Σ. 3

2.2 Design of Adaptive Algorithm F (u)

The adaptive algorithm F (u) in Fig. 1 consists
of an internal model for sinusoidal disturbance
and a frequency identifier as shown in Fig. 2. We
adopt the internal model proposed in (Brown and
Zhang, 2001), but we modify it with additional
feedback loop using ya for stability. Then, the
internal model with additional feedback loop ya

is
[
ζ̇1

ζ̇2

]
=

[
0 1

−σ̂2 −Kf

] [
ζ1

ζ2

]
+

[
0

Kf

]
u,

ya = [0 1]

[
ζ1

ζ2

]
.

(8)

Remark 1. The feedback loop ya is new pro-
posed structure in this paper. For the structure,
the system matrix in (8)

[
0 1

−σ̂2 −Kf

]

is Hurwitz because σ̂ and Kf is positive, and
degree of the system matrix is second order. This
feature is very important for stability analysis in
section 3. 3

Under the Remark 1, our frequency identifier is
given by

˙̂σ = Keε = −Ke

σ̂Kfζ1(u − ζ2)

(σ̂ζ1)2 + ζ2
2

(9)

where Ke is a small positive constant to be chosen.
This identifier is obtained with the following argu-
ment (which will be formally justified in the next
section). We assume that the exosystem has the
frequency σ so that the vector w(t) is sinusoidal
with the same frequency. If the closed-loop system
is stable, then the input u(t) will converge to its
steady-state as uss(t) = Au sin(σt+ϕu). Then, by
Remark 1 for the system (8), we have

ζ1,ss(t) = Aζ sin(σt + ϕζ)

ζ2,ss(t) = σAζ cos(σt + ϕζ)
(10)

where 2

ϕu = tan−1

(
Kfσ

σ̂2 − σ2

)
+ ϕζ

Au =
Aζ

√
(σ̂2 − σ2)2 + (σKf )2

Kf

.

From this, we see that

tan−1

(
σζ1,ss

ζ2,ss

)
= σt + ϕζ . (11)

The derivative of (11) with respect to time is

d

dt

(
tan−1

(
σζ1,ss

ζ2,ss

))
= σ. (12)

Let the error be σ̃ = σ̂ − σ. Then,

σ̃ = σ̂ −
σ(ζ̇1,ssζ2,ss − ζ1,ssζ̇2,ss)

(σζ1,ss)2 + ζ2
2,ss

.

In the case that σ̃ 6= 0, we employ the parameter
update law as

˙̃σ = −Keσ̃ = −Ke

(
σ̂ −

σ(ζ̇1,ssζ2,ss − ζ1,ssζ̇2,ss)

(σζ1,ss)2 + ζ2
2,ss

)

where Ke > 0 is a gain. However, because the
value σ is unknown, we replace it by its estimate
σ̂, and then, we obtain by some calculation that

˙̃σ = −Ke

σ̂Kfζ1,ss(uss − ζ2,ss)

(σ̂ζ1,ss)2 + ζ2
2,ss

.

Inspired by this form, we will use (9) as our
parameter update law whose stability and conver-
gence properties are analyzed in the next section.

3. ANALYSIS ON STABILITY AND
CONVERGENCE

In this section, we show the stability and error
convergence for the closed-loop system. In fact,
the closed-loop system, consisting of the plant (1),
the stabilizing controller (3), the output regula-
tor (6), and the frequency identifier (8) and (9),
has the structure of singularly perturbed system
because the gain Ke is chosen sufficiently small.
In other words, the update law (9) of frequency
estimate yields the reduced system while the rest

2 In this section, the function tan−1(y/x) should be un-
derstood as the arctangent of y/x, using the signs of both
arguments x and y to determine the quadrant of the return
value.



constitutes the boundary-layer system in the stan-
dard singular perturbation theory 3 .

To show this, we begin by investigating the fast
dynamics (i.e., the boundary-layer system) assum-
ing that σ̂ is frozen (i.e., a constant). With the
control input

u = uc + ur = Hz + Je + (0 Γσ̂) ξ,

the closed-loop consisting of the plant (1), the
controller (3), and the output regulator (6) can
be written as

˙̃x = (A + BJC)x̃ + BHz + BΓσew + B(Γσ̂ − Γσ)w,

ż = GCx̃ + Fz,

ėx = (A − K1C)ex + (P − K1Q)ew,

ėw = (−K2C)ex + (Sσ̂ − K2Q)ew + (Sσ̂ − Sσ)w,
(13)

where x̃ := x−Πw, ex := ξx−x and ew := ξw −w
(where ξT = [ξT

x , ξT
w ]), and the signal w comes

from the exosystem

ẇ =

[
0 1

−σ2 0

]
w, σ ∈ Σ ⊂ R>0, w(0) ∈ W ⊂ R

2.

It follows that

w1(t) =
Aw

σ
sin(σt + ϕw)

w2(t) = Aw cos(σt + ϕw),

with certain Aw and ϕw depending on the initial
condition w(0). By Assumptions 1 and 3, the
matrices[

A + BJC BH
GC F

]
,

[
A − K1C P − K1Q
−K2C Sσ̂ − K2Q

]

are Hurwitz, and thus, the steady-state solutions
of x̃(t), z(t), ex(t) and ew(t) in (13) are all sinu-
soidal with the frequency σ. This, in turn, implies
that the steady-state input is also sinusoidal that
can be expressed by

uss(t) = Hzss + Jess + Γσ̂ξw,ss

= Hzss + JCx̃ss + Γσ̂(ew,ss + w)

= Au sin(σt + ϕu)

with certain Au and ϕu.

On the other hand, a part of the frequency iden-
tifier (8) in the closed-loop system is given by

ζ̇1 = ζ2,

ζ̇2 = −σ̂2ζ1 − Kfζ2 + Kfu.
(14)

Since u(t) → uss(t) and by Remark 1, we obtain
the steady-state solution of ζ1 and ζ2 as (10), and
the solution of (14) converges to its steady-state
solution.

In summary, with X := [x̃T , zT , eT
x , eT

w, ζT
1 , ζT

2 ]T

and its steady-state signal Xss(t), we define

X̃(t) = [xT
e , zT

e , eT
xe, e

T
we, ζ

T
1e, ζ

T
2e]

T := X(t) −
Xss(t). Then, we have

˙̃
X = ḡ(X̃, σ̂) (15)

3 We refer to (Khalil, 2002) for the singular perturbation
theory, but the situation in this paper is more suitable to
(Riedle and Kokotovic, 1986).

where ḡ(0, σ̂) = 0 and ∂ḡ

∂X̃
(0, σ̂) is Hurwitz for each

frozen σ̂. Indeed, it is easily seen that
[
ẋe

że

]
=

[
A + BJC BH

GC F

] [
xe

ze

]
+

[
BΓσewe

0

]

[
ėxe

ėwe

]
=

[
A − K1C P − K1Q
−K2C Sσ̂ − K2Q

] [
exe

ewe

]

[
ζ̇1e

ζ̇2e

]
=

[
0 1

−σ̂2 −Kf

] [
ζ1e

ζ2e

]

+

[
0

Kf (Hze + JCxe + Γσ̂ewe)

]
,

which ensures that (15) is globally exponentially
stable for every σ and every frozen σ̂.

Now, consider the rest of the closed-loop system
(i.e., the update law (9) for the unknown fre-
quency);

˙̂σ = −Ke

σ̂Kfζ1(u − ζ2)

(σ̂ζ1)2 + ζ2
2

. (16)

With the state X(t) being its steady-state Xss(t),
this becomes

˙̂σ = −Ke

σ̂Kfζ1,ss(uss − ζ2,ss)

(σ̂ζ1,ss)2 + ζ2
2,ss

= −Ke

σ̂2 − σ2

σ̂

sin2 θ

sin2 θ + σ2

σ̂2 cos2 θ

where θ(t) = σt + ϕζ . From this and (13),
it is seen that σ̂ss(t) = σ and Xss(t) =
[0, 0, 0, 0, ζ1,ss(t), ζ2,ss(t)]

T is one of the steady-
state solutions of the closed-loop system, which is
desired because e(t) = Cx(t)+Qw(t) = Cx̃(t) = 0
in the steady-state.

Now consider the system (16) equivalently writ-
ten, with σ̃ := σ̂ − σ, as

˙̃σ = −Ke

(σ̃ + σ)Kf (ζ1e + ζ1,ss)

(σ̃ + σ)2(ζ1e + ζ1,ss)2 + (ζ2e + ζ2,ss)2

× [H(ze + zss) + JC(xe + x̃ss)

+ Γσ̂(ewe + ew,ss) + Γσ̂w − ζ2e − ζ2,ss]

=: Kef(t, X̃, σ̃).

Then, by defining a new time scale τ := Ket and
ε := Ke, we have

ε
dX̃

dτ
= ḡ(X̃, σ̃ + σ) =: g(X̃, σ̃) (17)

dσ̃

dτ
= f(τ/ε, X̃, σ̃), (18)

which is in the standard form of singularly per-
turbed systems.

We have already shown that the origin (i.e., X̃ =
0) of the boundary-layer system (17) is globally
exponentially stable with a frozen σ̃ (because

g(0, σ̃) = 0 and ∂g

∂X̃
(0, σ̃) is Hurwitz). On the other

hand, the reduced system in the slow manifold

(i.e., X̃ = 0) is described by ˙̃σ = εf(t, 0, σ̃) whose
origin σ̃ = 0 can be shown to be exponentially
stable with sufficiently small ε = Ke as follows.
The system under consideration is given by



˙̃σ = εf(t, 0, σ̃)

= −ε
(σ̃ + σ)2 − σ2

σ̃ + σ

sin2 θ(t)

sin2 θ(t) + σ2

(σ̃+σ)2 cos2 θ(t)
.

The above system is in the standard form for the
averaging theory (Khalil, 2002, Sec. 10.4) since ε
is small and the system is periodic in t with a
period T = 2π/σ. Then, the averaged system is
obtained, with σ̃ small so that (σ̃ + σ) is positive,
4 as

˙̃σ : =
ε

T

∫ T

0

f(t, 0, σ̃)dt

= −
ε

π

(σ̃ + σ)2 − σ2

σ̃ + σ

∫ π

0

sin2 θ

sin2 θ + σ2

(σ̃+σ)2 cos2 θ
dθ

= −εσ̃.

Therefore, by (Khalil, 2002, Theorem 10.4, or
Example 10.8), we conclude that there exists an
ε∗1 > 0 such that, for each ε ∈ (0, ε∗1), the origin
σ̃ = 0 (i.e., σ̂ = σ) of the reduced system (18) is
locally exponentially stable.

We finally prove that there exists an 0 < ε∗ ≤ ε∗1
such that, with Ke = ε ∈ (0, ε∗), the closed-
loop system is exponentially stable and any tra-
jectory converges to the desired steady-state so-
lution. (This in turn means that e(t) = Cx̃(t)
converges to zero as time goes to infinity.) This is
done by employing (Khalil, 2002, Theorem 11.3).
Although (Khalil, 2002, Theorem 11.3) only han-
dles the time-invariant case, it is not difficult to
follow the proof with our time-varying system (18)
under consideration. Note, in particular, that due
to the exponential stability of (17) and (18), and
their continuous differentiability, the interconnec-
tion condition discussed in (Khalil, 2002, p. 453)
holds, which simplifies the proof.

4. TRACK FOLLOWING CONTROL FOR
OPTICAL DISK DRIVE

We applied the designed controller to an optical
disk drive (ODD). The overall configuration of the
closed loop system is illustrated in Fig. 3. We have
obtained the optical disk drive model of LG ×52
CD-ROM drive experimentally using LDV (Laser
Doppler Velocimeter), whose plant is

P (s) =
818.22

s2 + 64.73s + 166800
(m/V ). (19)

The plant can be represented in state-space by

ẋ = Ax + Bu =

[
0 1
a1 a2

]
x +

[
0
b

]
u, (20)

y = Cx = [1 0] x (21)

where u is the force and y is the position. The
tracking error of ODD system is e(t) = y +
d where y is the plant output and d is the

4 We use the fact that∫
sin2 θ

sin2 θ + a2 cos2 θ
dθ =

1

1− a2

(
θ − a tan−1

(
tan θ

a

))
.

�����������	
���

�������������������
�����

��
�����
��������������������������		�� ��

�� �
� � ��

��

�

�

�

=	 
�

� ��  � �� 

�� � � ��σ� �

� � �

�� � � �

� �� � � � �
�

� � � � �σ

ξ ξ
− −� � � � � �

= + +� � � � � �− − � �� �� �

�



�



( )�� σ ξ= Γ��

�����
	�����������

( )

��

�

��

�

�

�� �

� �

� �

��

ζζ
ζσζ

ζ
ζ

� � � �� �� �
= +� � � �� �� �−� �� � � �� �

� �
= � �

� �

�

� �

�

�

�

�

�

�
�

�
�� �

σ ζ
σ

σζ ζ
= −

+
�

� ���

� �

�
� ��

�ζ ζ� �

��

�σ

��
�������	�������

��

�

� �� �

�σ

������������	
���� ������
�������	�������

Fig. 3. Actual system configuration with adaptive
output regulator

disturbance. The disturbance is in the form of
sinusoidal whose frequency is the unknown. Thus,
it can be expressed by

e = Cx + Qw = [1 0] x + [−1 0] w, (22)

ẇ = Sσw =

[
0 1

−σ2 0

]
w (23)

for the control goal that e(t) = x1(t)−w1(t) → 0.
Note that the state x and w are not measurable
but e and u are measurable. Here, the equations
(20) and (22) are now in the form of (1) (with
P = 0).

Remark 2. There is, in fact, sensor gain Kopt in
the feedback loop (see Fig. 3). The gain converts
the position displacement into voltage. Our ex-
periment shows Kopt ≈ 1.25 × 106V/m, but we
regarded this value as 1 for simple discussion in
the above. 3

The state feedback gain Γσ̂ of output regulator
R(e, u, σ̂) in Fig. 3 is obtained in (4) and (5). In
this case, we have

Γσ̂ =
1

b
(a1Q + a2QSσ̂ − QSσ̂

2). (24)

We also assume that the C(s) has been designed
(Assumption 1). Here, we simply assume that the
following lead-lag compensator has been designed:

C(s) = −
2.4364s2 + 17420s + 12558500

s2 + 97515s + 7309900
. (25)

Remark 3. In our ODD system, disturbance fre-
quency is 68Hz on ID(inner track of disk) and
57Hz on OD(outer track of disk). The observer
gain K1 and K2 are selected to satisfy assumption
3 for 2π · 55 ≤ σ̂ ≤ 2π · 70 by Kharitonov
Theorem (Kharitonov, 1978) as

K1 =

[
−6479.4
42932.0

]
, K2 =

[
−7914.6

−302314.7

]
. (26)

3

A simulation results is shown in Fig. 4. The
initial value of σ̂ is 60Hz. In Fig. 4 (d), the
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Fig. 4. Simulation result. (a) Tracking error e. (b)
Output of the pre-installed controller C(s).
(c) Output of the adaptive output regulator
R. (d) The adaptive frequency ρ whose initial
values is 60Hz.

frequency σ̂ estimated by the adaptive algorithm
F (u) converges to the real frequency 68Hz. The
tracking error is perfectly cancelled, as shown in
Fig. 4 (a).

The adaptive output regulator is implemented
using TMS320VC33 DSP (manufactured by TI
Co.) and is applied to LG ×52 CD-ROM disk
drive. Configuration for the experiment is the
same as Fig. 3 except that we have added a low-
pass filter in front of A/D converter because the
measured signal was too noisy. The experiment
result in Fig. 5 shows the convergence of actual
frequency and the tracking error reduction as the
simulation result of Fig. 4. The tracking error is
not perfectly cancelled out due to the added filter
and the fact that the disturbance is not sinusoidal.
Note that the controller C(s) of the ODD is not
known to us. However, we have a good agreement
between the simulation and experiment result.

5. CONCLUSIONS

In this paper, an adaptive output regulator was
proposed for cancelling sinusoidal disturbance
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Fig. 5. Experiment result.

with unknown frequency. This result is an ex-
tended version of our previous work for out-
put regulator. By adding the adaptive algorithm
to add-on output regulator, the output regula-
tor is able to reject disturbance even though its
frequency is unknown while preserving the ad-
vantages of the output regulator. It was shown
that the proposed method is stable for frequency
within a connected compact set. In addition, its
stability was proven under the assumption that
the frequency of disturbance varies slowly in time.
The proposed method was applied to a commer-
cial optical disk drive as an add-on type con-
troller even without knowing the structure of pre-
installed controller. We confirm that there is a
good agreement between simulation and experi-
ment results.
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