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Abstract: This paper is concerned with autopilot design for an agile missile with
aerodynamic fins, thrust vectoring control, and side-jet thrusters. Two-time scale
dynamic inversion is used as a nonlinear flight control law. To deal with the
inherently weak robustness property of dynamic inversion, Ackermann-like formula
which is a time-varying version of Ackermann formula for LTI systems is applied to
control the aerodynamic fins to stabilize LTV tracking error dynamics. In addition,
control allocation algorithms for the effective distribution of the required total
control efforts to the individual actuators are suggested, which are capable of
extracting the maximum performance by combining each control effector. Finally,
the main results are validated through nonlinear simulations with aerodynamic
data. Copyright c©2005 IFAC
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1. INTRODUCTION

The modern control system of an agile missile
has the many challenges due to the stringent re-
quired performance such as fast time response,
high angle of attack, and high maneuverability.
Usually, to achieve the required performance, the
agile missiles combine the new control effectors
(thrust vectoring, side thrusters) with the conven-
tional control surface (aerodynamic fin) because
thrust vectoring control and side-jet thrusters can
provide additional moments and forces to achieve
the reference command (Wise and Broy, 1998).
However, managing each of a group of control
devices with the independent control logic some-
times can result in reduced missile controllability
and efficiency (Paradiso, 1991).

On the other hand, an agile missile has nonlin-
ear, time-varying and highly coupled dynamics.
Furthermore, this has many uncertainties due to
the difficulty to obtain exact aerodynamic data for
vehicles operating under such conditions and may
in fact be poorly approximated to the actual dy-
namics. These and other concerns have prompted
researchers to look beyond the classical methods.
Despite the well-known limitations, two of most
methods, gain-scheduling and nonlinear dynamic
inversion (feedback linearization), appeared to be
the focus of the current prominent research efforts.

This paper is concerned with autopilot design
for an agile missile with aerodynamic fin, thrust
vectoring control, side-jet thrusters. Two control
schemes are used for autopilot design. One is two-
time scale dynamic inversion used as a nonlin-
ear control law which can determine the nominal



states trajectories. The other is LTV control tech-
nique which is applied to stabilize LTV tracking
error dynamics that can be obtained by trajec-
tory linearization. For LTV control, Ackermann-
like formula based on the time-varying eigenvalues
theory will be proposed. This is a time-varying
version of Ackermann formula for linear time-
invariant system. Closed-loop stability of LTV
tracking error dynamics can be achieved by as-
signing the time-varying eigenvalues to the de-
sired trajectories with the negative real parts.
The control allocation algorithms which distribute
control demand among the individual control ef-
fectors, generate the nominal control inputs of
each control effector to achieved the required mo-
ment which can be obtained from two-time scale
dynamic inversion. They are capable of extracting
the maximum performance from each control ef-
fector by combining the action of them. The main
results will be validated through the nonlinear
simulations with aerodynamic data.

2. AGILE MISSILE DYNAMICS

The considered agile model with additional con-
trol effectors is a nonlinear pitch dynamics model.
The equation of motion is given by
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where α, q, V , δfin, δtvc, Tsjt, M are angle of
attack, pitch rate, missile velocity, aerodynamic
fin deflection angle, thrust vectoring control de-
flection angle, side-jet thrust and Mach number,
and m, ρ, S, C, T , ltvc, lsjt are mass, air density,
reference area, reference length, thrust, moment
arm of thrust vectoring control, and moment arm
of side-jet thrust, respectively. CX0 , CZ0 , Cm0 are
aerodynamic coefficients at δfin = 0, and CXδ ,
CZδ , Cmδ are variations of aerodynamic coeffi-
cients due to δfin deflection. Aerodynamic fin and
TVC actuators have the limits within ±30◦ and
±5.5◦, and second-order dynamics with ζ = 0.7,
ωn = 150 and ζ = 0.7, ωn = 50, respectively. A
side-jet thruster has constant thrust during 30ms
burning time like a pulse signal and maximum 10

side-jet thrusters can be simultaneously ignited at
once.

Aerodynamic coefficients in Eqs. (1)-(2) are rep-
resented as the approximated function of angle of
attack at fixed Mach number for control design as
follows:

C̃Z0(α) = a1α
4 + b1α

3 + c1α
2 + d1α

C̃Zδ(α, δfin) = (a2α
3 + b2α

2 + c2α+ d2)δfin(4)

C̃m0(α) = a3α
4 + b3α

3 + c3α
2 + d3α

C̃mδ(α, δfin) = (a4α
3 + b4α

2 + c4α+ d4)δtvc(5)

where the coefficients ai, bi, ci, di in Eqs.(4)-
(5) are constants obtained from curve-fitting of
aerodynamic data.

3. NONLINEAR DYNAMIC INVERSION

Nonlinear dynamic inversion is used to obtain
the required pitch moment for angle of attack
command tracking. The structure of this paper is
two-time scale dynamic inversion. Fast dynamic
inversion, q inversion, calculates the required mo-
ment needed for the actual pitch rate, q, to follow
the commanded pitch rate qcmd given by slow dy-
namic inversion, α inversion (Reiner et al., 1996).

First, the slow dynamic inversion which trans-
forms the angle of attack command into the de-
rived pitch rate command has the following form:

qcmd = α̇d −
1
2ρV S
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− T

mV
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where δ̄fin, δ̄tvc, and T̄sjt are the nominal fin
deflection, thrust vectoring control deflection, and
side-jet thrust, respectively. α̇d is the desired angle
of attack dynamics and defined by

α̇d = ωα(αcmd − αmeas) (7)

where αcmd is angle of attack command and αmeas
is measured(or estimated) angle of attack. ωα is a
design parameter.

Second, the fast dynamic inversion is applied to
the dynamics of pitch rate q and calculates the re-
quired moment to achieve the reference command.
With Eq. (2), the fast dynamic inversion has the
following form:
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Let this equation be briefly represented as follows:



Md = Mf δ̄fin +Mtδ̄tvc +MsT̄sjt (9)

where Mf , Mt and Ms mean the control distri-
bution functions of aerodynamic fin, thrust vec-
toring control, and side-jet thruster, respectively.
In Eq. (9), the left-hand term means the required
moment which makes pitch rate have the desired
dynamics and can be given by

Md = q̇d −
1
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Iyy
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C
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where q̇d is the desired pitch rate dynamics and
defined by

q̇d = ωq(qcmd − qmeas) (11)

where qcmd is the derived pitch rate command ob-
tained from the slow dynamic inversion and qmeas
is measured pitch rate. ωq is a design parameter.
The right-hand term is the achievable moment
which is generated by using the aerodynamic fin,
thrust vectoring control and side-jet thruster.

4. CONTROL ALLOCATION

The family of the control effectors of the agile
missile can be divided into two groups according
to the usage phase. One(Group A) is a group
of the aerodynamic fin and the thrust vectoring
control, and the other(Group B) is a group of the
aerodynamic fin and the side-jet thruster. The
former is used during thrust propulsion, while
the latter is used after burning out. Two control
allocation techniques - a pseudo control method
for Group A and a daisy-chain method for Group
B - are used for allocating the pitch control
moment.

4.1 Pseudo Control Method

Pseudo control allocation technique for aerody-
namic fin and thrust-vectoring control is repre-
sentative of the ganged configurations (Paradiso,
1991). The ganged effectors always cooperate,
that is, their control effort is coordinated and
control effectiveness of each control effector is
adjusted by the time-varying weighting functions
wi. For the case of Group A, to accomplish the
desired command, the following equality must be
satisfied with

Md =Mf δ̄fin +Mtδ̄tvc

=
[
Mf Mt

] [ δ̄fin
δ̄tvc

]
(12)

From Eq. (12), the amount of the deflection of
each control effector can be determined by matrix
inversion as follows:

[
δ̄fin
δ̄tvc

]
=
[
Mf Mt

]−1
Md (13)

where the inverse of control distribution function
matrix is not unique because of rank redundancy.
Hence the control allocation function of each
control effector can be obtained from using the
pseudo-inverse property minimizing the following
object function:

min J =
[
δ̄fin δ̄tvc

] [w1 0
0 w2

] [
δ̄fin
δ̄tvc

]

subject to
[
Mf Mt

] [ δ̄fin
δ̄tvc

]
= v (14)

where v is pseudo control. The pseudo control v
is distributed in such a way that the weighted
energy of the actual control input is minimized.
The above optimization problem has an explicit
solution which can be using several technique.
But, by using the Lagrange multipliers, the op-
timal inputs are given by

[
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δ̄tvc

]
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)(Mt)2

(w1
w2

)Mt

(Mf )2 + (w1
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)(Mt)2


Md (15)

where w1, w2 are the weighting values of each
control effector, respectively.

4.2 Daisy-Chain Method

Daisy-chain allocation technique for aerodynamic
fin and side-jet thruster allocates control effectors
in prioritized manner (Berg et al., 1996). This
means that the control effector family with high
priority is first used, and then others are used
later. In this study, side-jet thruster is high pri-
ority actuator. Therefore, aerodynamic fin is not
used until at least one side-jet thruster is ignited
except for a case that the required moment is less
than a side-jet thruster can generate. Daisy-chain
control allocation for Group B is given by the
following equation:

[
T̄sjt
δ̄fin

]
=
[

M−1
s Md

M−1
f {Md −MsT̄sjt}

]
(16)

Since the side-jet thruster which has constant
thrust during burning time is a pulse-like signal,
the nominal control command of side-jet thrust in
Eq. (16) must be discretized.

5. TIME-VARYING CONTROL TECHNIQUE

In this section, time-varying eigenvalue (PD-
eigenvalue) is introduced into Ackermann-like for-



mula which is the time-varying version of Ack-
ermann formula for LTI systems. LTV control
is applied to stabilize a tracking error dynamics
which is derived by linearizing a nonlinear dynam-
ics through the nominal trajectories.

5.1 LTV Spectral Theory

Some technical preliminaries to propose the Acker-
mann-like formula for linear time-varying systems
are presented in this section. In order to obtain
the eigenvalue for linear time-varying systems, an
unified spectral theory for Nth-order scalar linear
time-varying systems is introduced as follows:

y(N) + aN (t)y(N−1) + · · ·+ a1(t)y = 0 (17)

(17) can be conveniently represented as Da {y} =
0 using the scalar polynomial differential operator
(SPDO)

Da = δN + aN (t)δN−1 + · · ·+ a1(t) (18)

where δ = d/dt is the derivative operator.

Definition 1. (Zhu and Johnson, 1991)

Let Dα be an Nth-order SPDO and let {yi}Ni=1 be
any fundamental set of solutions to Dα {y} = 0.
Let

W (t) =




y1 · · · yN
ẏ1 · · · ẏN
...

. . .
...

y
(N−1)
1 · · · y

(N−1)
N


 (19)

be the Wronskian matrix associated with {yi}Ni=1.
Denote by D(t) the diagonal matrix

D(t) = diag [y1, y2, · · · , yN ]. (20)

Then

PN (ρ1(t), · · · , ρN (t)) = W (t)D−1(t)

=




1 · · · 1
Dρ1 {1} · · · DρN {1}
D2
ρ1
{1} · · · D2

ρN {1}
...

. . .
...

DN−1
ρ1
{1} · · · DN−1

ρN {1}




(21)

where Dρi = (δ + ρi), Dkρi = DρiDk−1
ρi . The

canonical coordinate transformation matrix PN (t)
is called the modal canonical matrix for Dα asso-
ciated with the PD-spectrum {ρi(t)}Ni=1.

The column vectors pi(t) of PN (t) satisfying

Ac(t)pi(t)− ρi(t)pi(t) = ṗi(t) (22)

and row vectors qTi (t) of QN (t) = P−1
N (t) satisfy-

ing

qTi (t)Ac(t)− ρi(t)qTi (t) = −q̇Ti (t) (23)

are called right PD-eigenvectors and left PD-
eigenvectors, respectively, of Dα associated with
ρi(t) where Ac(t) is the companion matrix (phase-
variable form matrix) associated with Da.

¤
The relationship between the coefficients of Eq.(18)
and PD-spectrum is given by the following Lemma
1. This will be used to determine the phase-
variable form matrix of the closed-loop system
with the desired PD-eigenvalues.

Lemma 1.(Zhu and Johnson, 1991)

If the linear time-varying system is synthesized
from a PD-spectrum {ρi(t)}Ni=1, then the coeffi-
cients {ai(t)}Ni=1 are given by the synthesis for-
mula

ak(t) =
p̃k,N+1(t)

detPN (ρ1(t), · · · , ρN (t))
(24)

where PN (ρ1(t), · · · , ρN (t)) is the canonical PD-
modal matrix associated with {ρi(t)}Ni=1 given
by Eq.(21), and p̃k,N+1(t) denotes the algebraic
cofactor of pk,N+1(t) in the (N + 1) × (N + 1)
matrix

PN+1(t) = [pij(t)] =


1
PN (t) Dρ {1}

...
DNρ1
{1} · · · DNρN {1} DNρ {1}


 . (25)

¤

5.2 Ackermann-like Formula

In this section, the Ackermann-like formula for
SISO linear time-varying system is proposed. Con-
sider a controllable SISO linear time-varying sys-
tem of the form :

ẋ = A(t)x+ b(t)u (26)

with the state vector x ∈ RN×1 and the scalar
input u(t). The system can be stabilized by means
of a state feedback. Since a given system is con-
trollable, there exists a nonsingular controllabil-
ity matrix C(t) =

[
b1(t) b2(t) · · · bN (t)

]
where

bi+1(t) = A(t)bi(t) − ḃi(t) with b1(t) = b(t) and
an inverse matrix of C−1(t) satisfied with

C−1(t)C(t) =




C̃N−1(t)
C̃N−2(t)

...
C̃0(t)






× [ b1(t) b2(t) · · · bN (t)
]

= I (27)

where C̃i(t) is the (i+ 1)th row vector of C−1(t).

Let

z = C̃ ′0(t)x (28)

with C̃ ′0(t) = C̃0(t), and

˙̃C ′p(t) = ˙̃C ′p−1(t) + C̃ ′p−1(t)A(t) (29)

for each p = 1, 2, · · · , N .

It then follows that for each p,

z = C̃ ′0(t)x
ż = C̃ ′1(t)x
...

...
z(N−1) = C̃ ′N−1(t)x

(30)

and that

z(N) = C̃ ′N (t)x+ C̃ ′N−1(t)b(t)u. (31)

The rows C̃ ′p(t) are of dimension (1×N). Thus the
Nth row C̃ ′N (t) is a linear combination of theN−1
previous rows. Consequently the linear combina-
tion coefficients ai(t) exist. Further C̃ ′N−1(t)b(t) is
unity. Therefore, from Eq.(31), we have

z(N) =
[
a0(t)C̃ ′0(t) + · · ·+ aN−1(t)C̃ ′N−1(t)

]
x

+ u. (32)

To assign the PD-spectrum of the given system to
the desired locations, the feedback control can be
determined as follows;

u = k(t)x

= −
( [

a0(t) a1(t) · · · aN (t)
]

+
[
d1(t) d2(t) · · · dN (t)

]
)

×




C̃ ′0(t)
C̃ ′1(t)

...
C̃ ′N−1(t)


x (33)

where the coefficients di(t) are synthesized from
the desired PD-spectrum. They can be easily ob-
tained from Lemma 1. If the desired PD-spectrum
is satisfied with stability criterion (Zhu, 1996), the
close-loop system can be stabilized.

5.3 LTV Autopilot Design

For LTV autopilot design, let

ξ =
[
ξ1
ξ2

]
=
[
α
q

]
(34)

be the state vector of the missile. Then, from Eqs.
(1)-(2), the state equation is given by

ξ̇ = f(ξ, δfin)

=
[
f1(ξ1, ξ2, δfin)
f2(ξ1, ξ2, δfin)

]
. (35)

Now, for the given angle of attack command αcmd
and the derived pitch rate command qcmd from
slow dynamic inversion, let ξ̄ be the nominal state
trajectory and δ̄fin be the nominal fin deflection
such that

˙̄ξ = f [ξ̄, δ̄fin]. (36)

Define the tracking errors by

x = ξ − ξ̄, (37)

and the tracking error control by

v = δ − δ̄fin. (38)

Then the linearized tracking error dynamics is
given by

ẋ = A(t)x+B(t)v (39)

where

A(t) =
∂f

∂ξ

∣∣∣∣
ξ̄,δ̄fin

=
[
a11(t) 1
a21(t) a22(t)

]
,

B(t) =
∂f

∂δ

∣∣∣∣
ξ̄,δ̄fin

=
[
b1(t)
b2(t)

]
. (40)

The autopilot design task amounts to finding a
control law such that the tracking error becomes
zero exponentially for any admissible angle of
attack command. This can be achieved using an
LTV controller. Now an LTV control law v can
be designed for LTV tracking error dynamics
(39) using the Ackermann-like formula outlined
in previous statements.

6. SIMULATION RESULTS

Simulations with aerodynamic data are performed
to validate the proposed schemes. In this study,
there are two scenarios. One is subsonic flight
condition(M = 0.6) for Group A, and the other is
hypersonic(M = 6.0) for Group B.

Results for Scenario 1 and Scenario 2 are pre-
sented in Figures 1 - 2, and Figures 3 - 4, re-
spectively. Figure 1 shows that an angle of attack
command for Scenario 1 is well tracked within



5% steady-state error under various uncertainties
such as poorly approximated aerodynamic data in
curve-fitting, missile velocity variation, etc. The
distributed control efforts to follow the command
are depicted in Figure 2. As approaching the
steady state, the deflection of thrust vectoring
control is growing down less and less while the
deflection of aerodynamic fin is growing up more
and more. It is because the authorities of con-
trol effectors are dependent on flight condition.
Therefore, this fact reveals that pseudo control
method for Group A is the efficient control alloca-
tion algorithm reflected on flight condition. Under
similar circumstances, the angle of attack tracking
performance for Scenario 2 is depicted in Figure
3. This shows that after burning out, the angle of
attack command can be achieved by using side-
jet thrust. The allocated control efforts by daisy-
chain method for Group B are depicted in Figure
4. It can be inferred from this that side-jet thrust
usage prior to aerodynamic fin increases the ma-
neuverability of the missile in homing phase.

7. CONCLUSIONS

In this paper, a new autopilot is proposed for
an agile missile with conventional control surface,
aerodynamic fin, and additional thrusts such as
thrust vectoring control, side-jet thrusters. The
features of the proposed schemes include (1) ef-
fective control allocation for each control effector
(aerodynamic fin, thrust vectoring control, side-
jet thrusters) to achieve the angle of attack com-
mand, (2) good tracking performance for angle
of attack command without scheduling of any
constant design parameters throughout a wide
range of angle of attack, and (3) time-varying
control gains to improve the robustness for the
unstructured uncertainties. The proposed schemes
have been validated by nonlinear simulations with
aerodynamic data.
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Fig. 1. Angle of attack output for scenario 1
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Fig. 2. Fin vs. TVC for scenario 1
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Fig. 3. Angle of attack output for scenario 2
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