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Abstract: Optimal observability of continuous Petri Nets consists in deciding
the places to be measured (considering that all are measurable) such that the
net system is observable and a cost function is minimal. Unfortunately this is
not a simple covering problem. The results obtained in the paper are used in
the implementation of an algorithm to improve the pure combinatorial search.
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1. INTRODUCTION

Petri nets represent a powerful formalism for mod-
elling discrete event concurrent systems. Stochas-
tic T-timed Petri nets under infinite servers se-
mantics are well-known performance evaluation
models (Ajmone Marsan et al., 1995). Under high
traffic or heavy loads discrete event systems often
suffer from state explosion. One way to tackle this
problem is to relax the original discrete model.

Fluidification is a relaxation technique in which
discrete elements of the system are “taken” as
continuous. As in other discrete event formalisms
(e.g. queueing networks), the continuous relax-
ation of Petri nets has been introduced in order to
deal with the state explosion problem. Under in-
finite servers semantics, a timed continuous Petri
net system, obtained as a first-order relaxation,
can be seen as a deterministic piecewise linear
system (Silva and Recalde, 2002; Silva and Re-
calde, 2004). That is the evolution of the state of
the system is ruled by a set of switching noise-
free linear differential equation systems. Hence,
there exists the chance of applying some results
coming from Systems Theory to continuous Petri
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nets. Timed continuous Petri net systems have the
particularity that, at any given instant, the time-
invariant linear system differential equations that
rule its evolution depend uniquely on the state of
the system (marking). Hence, the switch from one
linear differential equation system to another one
is activated by an internal event, i.e., by a certain
change in the marking of the system.

The differential equations describing a continuous
dynamic system can be presented as a state space
model; the states are defined by means of state
variables. Some of them can be directly measured,
while, under some conditions, others can be es-
timated. The estimation constitutes the observa-
tion. In this paper we consider that all marking
variables can be measured but at different cost,
the cost of its sensor.

The main goal of this paper is to develop an
algorithm for optimal choice (minimum cost) of
the places that must be measured (sensed) in
order to ensure the observability of the system.

The paper is structured as follows: In Section 2
continuous Petri nets are recalled, while Section 3
presents the observability problem for continu-
ous Petri nets. Optimal observability problem is
stated in Section 4. Section 5 shows the main
results obtained and a computational algorithm
is illustrated at the end.



2. CONTINUOUS PETRI NET SYSTEMS

2.1 Untimed Continuous Petri Net Systems

The reader is assumed to be familiar with Petri
nets (PNs) (see for example (Murata, 1989)).
The PNs that will be considered are continuous,
relaxation of discrete ones. Unlike ’usual’ discrete
systems, the amount in which a transition can
be fired in a continuous Petri net system is not
restricted to be a natural number. The marking
of the system becomes a vector of real numbers.
A PN system is a pair 〈N ,m0〉, where N specifies
the net structure, N = 〈P, T,Pre,Post〉 and
m0 is the initial marking. The sets of places and
transitions are denoted by P and T respectively.
Matrices Post and Pre are the arc weight matri-
ces and C = Post−Pre is the token flow matrix.
The set of input (output) places of a given set of
transitions V is denoted as •V (V •). Analogously,
the set of input (output) transitions of a given set
of places W is denoted as •W (W •).

In continuous Petri net systems a transition t is
enabled at a marking m iff every input place of t is
marked (for every p ∈ •t, m[p] > 0). As in discrete
systems, the enabling degree at marking m of
a transition measures the maximum amount in
which the transition can be fired in a single occur-
rence, i.e., enab(t,m) = minp∈•t{m[p]/Pre[p, t]}.
The firing of t in an amount α ≤ enab(t,m)
produces a new marking m′, and it is denoted as

m αt
−→m′. It holds m′ = m + α ·C[P, t], hence, as

in discrete systems the state equation m = m0 +
C · σ summarizes the way the marking evolves,

where σ ∈ (R+)
|P |

is the firing count vector. As
in discrete nets, continuous nets can be classified
according to their structure:

• N is a weighted T-graph if ∀p ∈ P : |p•| =
|•p| = 1.

• N is Choice-Free (CF) if ∀p ∈ P : |p•| ≤ 1.
• N is Join-Free (JF) if ∀t ∈ T : |•t| ≤ 1.
• N is Equal Conflict (EQ) if •t ∩ •t′ 6= ∅ ⇒

Pre[P, t] = Pre[P, t′].
• N is Attribution Free (AF) if ∀p ∈ P : |•p| ≤ 1.

2.2 Timed Continuous Petri Net Systems

For the timing interpretation, a first order (or
deterministic) approximation of the discrete case
(Recalde and Silva, 2001) will be used, assuming
that the delays associated to the firing of the
transitions can be approximated by their mean
values. Each transition t has associated an internal
firing speed λ > 0. The state equation has an
explicit dependence on time m(τ) = m0+C·σ(τ).
Deriving with respect to time, ṁ(τ) = C · σ̇(τ) is
obtained. Let us denote f = σ̇, since it represents
the flow through the transitions. In this paper
it will be assumed that every transition has at
least one input place. Infinite servers semantics
will be considered. Under this semantics, the flow
of a transition is given by the product of λ and
its enabling degree, i.e., f [t] = λ · enab(t,m) =
λ · minp∈•t{m[p]/Pre[p, t]}, what leads to a non-
linear system.

In JF nets, the computation of the enabling de-
grees does not require the min operator. Hence,
the flow of the transitions can be expressed as
f = Ψ · m where Ψ[t, p] = λt/Pre[p, t] if p = •t,
Ψ[t, p] = 0 otherwise. Consequently, the evolution
of the marking can be described by an equation
in the form ṁ = C · f = A ·m, where A = C ·Ψ.
Hence, a JF system can be interpreted as a (non-
negative) linear system.

For a general PN system, matrix A (usually, not
of maximal rank) is piecewise-constant, depending
on m. To compute A(m), it is necessary to know
the set of places that are actually constraining the
enabling of the transitions, i.e., the set of places
that is giving the minimum in the expression for
the enabling degree. Once this set is computed, it
is easy to establish a linear relationship between
the marking of the places in this set and the
flow of the transitions: ṁ = A(m) · m, with
A(m) = C ·Ψ where Ψ[t, p] = λt/Pre[p, t] if p ∈
•t and m[p]/Pre[p, t] = minq∈•t{m[q]/Pre[q, t]},
Ψ[t, p] = 0 otherwise.

Definition 1. (Júlvez et al., 2004) Given a PN
system, the PT-set at marking m is defined as:
PT-set(m) = {(p, t) | f [t] = λt ·m[p]/Pre[p, t]}.

A continuous Petri net system can be seen as a
time-invariant piecewise linear system in which
the switches among the linear systems are acti-
vated by internal events, i.e., the change from
one PT-set to another does not need any exter-
nal agent, just a certain change in the system
marking. The marking of the system and its first
derivative with respect to time are continuous.

3. OBSERVABILITY: PROBLEM
STATEMENT

Let us briefly consider first linear time invariant
systems, for which observability has been thor-
oughly studied (see, for example, (Luenberger,
1971; Ogata, 1995)). An unforced linear system
(i.e., without inputs) is usually expressed by equa-
tions ẋ(t) = A ·x(t), y(t) = S · x(t) where x(t) is
the state of the system and y(t) is the output, i.e.,
the set of measured variables. Knowing matrices
A and S and being able to watch the evolution of
y(t), a linear system is said to be observable iff it is
possible to compute its initial state, x(t0) (in fact,
since the system is deterministic, knowing the
state at the initial time is equivalent to knowing
the state at any time).

In Systems Theory a very well-known observabil-
ity criterion exists which allows to decide whether
a continuous linear system is observable or not.
Besides, several approaches exist to compute the
initial state of a continuous time linear system
that is observable.

Given an unforced linear system, ẋ(t) = A ·
x(t),y(t) = S·x(t) the output of the system (y(t))
and the observability matrix (ϑ) are:

y(t) = S · eA·t · x(t0) (1)

ϑ =
(

ST , (SA)T , · · · , (SAn−1)T
)T

(2)
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Fig. 1. Two JF nets: (a) whose marking cannot
be estimated from the observation of p1 if
λ2 = λ3; (b) not observable measuring p5

if λ4 = λ5 = 2·λ2·λ3

λ2+λ3

.

Proposition 2. (Luenberger, 1971) Equation (1)
is soluble ∀x(t0), ∀t ≥ 0 iff observability matrix ϑ
has full rank.

An interpretation of complete observability is that
there is no simplification in the transfer function
between the state variables and the output (Sinha,
1984). Considering a single-input / single-output
system, the transfer function between the state
variables and the output is given by:

Y(s) = S(sI − A)−1 =
1

∆(s)
[q1(s) . . . qn(s)] (3)

If Y(s) has a cancellation (all the polynomials
qi(s) and ∆(s)) have a common factor) this can-
celled state cannot be observed in the output y.

Definition 3. (Júlvez et al., 2004) Let 〈N , λ,m0〉
be a continuous Petri net system, D the set of
measured places.

• A place p ∈ P is observable from D iff
m0[p] = m(τ0)[p] can be computed by mea-
suring the marking evolution of the places in
D. Let O be the set of all places observable
from D.

• 〈N , λ,m0〉 is observable from D iff every
place p ∈ P is observable (O = P ).

Straightforward applycation of Prop. 2, leads to:

Property 4. Given a Petri net system and Γi the
linear system associated to PT-set i. The PT-set i
is observable iff its associated observability matrix
ϑi has full rank.

4. OPTIMAL OBSERVABILITY PROBLEM

Let us now assume that places have associated
a measuring cost, ∀p ∈ P : w(p) > 0. The
observability cost for a given set D is w(D) =
∑

pi∈D w(pi); the problem is to determine a set

D with minimum cost from which 〈N , λ,m0〉 is
observable.

In general, if for a set of measured places Di

the observable places are Oi then for the set
D = D1 ∪ D2 ∪ · · · ∪ Di the observable places are
O, with |O| ≥ |O1 ∪ O2 ∪ · · · ∪ Oi|. Considering
Fig. 1(a) with λ2 = λ3, the set of all places

observable from D1 = {p1} is O1 = {p1} and
from D2 = {p2} is O2 = {p2, p4} but, measuring
D = D1 ∪D2 = {p1, p2}, the system is observable,
so O = {p1, p2, p3, p4} and |O| > |O1 ∪ O2|.

Assuming that sets Di and Oi are determined,
optimal observability problem can be seen as a
Set Covering Problem (SCP), which is NP-hard
in the strong sense (Garey and Johnson, 1979).
Unfortunately, the number of covering elements
do not restrict to the number of places, Di = {pi},
what makes practical complexity very important
and forces us to look for some properties of PNs.

5. OPTIMAL OBSERVABILITY FOR PNS

5.1 General nets: reduction to JF and CF (JC-F)

Consider first Fig.2(a). In the absence of any
information about the markings of p1 and p2, it is
observable iff all places are measured.

The place p3 must be measured: using the mark-
ing of p3, the flow of the transition t3 can be
computed as f3 = λ3 · m[p3]. The derivative of
the marking and the flow of transition t3 permit
the computation of the flow of transition t using
ft = ṁ[p3] + f3. This flow is equal by the other
hand with ft = λt ·min(m[p1],m[p2]). In the last
expression, ft and λt are known which implies
that the minimum between m[p1] and m[p2] can
be evaluated. If always m[p1] ≤ m[p2] (so the
place p2 is time implicit), m[p1] equals with the
minimum and p2 must be measured. Identically,
if m[p2] ≤ m[p1] in any moment, p1 should be
measured. If no information regarding m[p1] and
m[p2] is given then the only solution for the ob-
servability is to measure both p1 and p2.

Therefore, the flow of transition t gives the mini-
mum marking of the input places. Considering any
initial marking, this minimum does not provide
enough information to estimate m[p1] or m[p2],
so the arc between p1 and t and the arc between
p2 and t can be deleted without affecting the ob-
servability. The same considerations can be used
to prove the next theorem.

Theorem 5. Let N be a Petri net, and let N ′ be
the net obtained removing all the input arcs of
the synchronizations. 〈N , λ,m0〉 is observable for
any initial marking iff 〈N ′, λ′,m′

0〉 is observable.

The net N ′ obtained by eliminating all the syn-
chronizations is a JF. All the conflicts are EQ and
so, the net can be mapped into CF. Thus any
criteria developed for JC-F PNs is immediately
extended to all PNs.

5.2 Attribution Free Petri nets

For JF & CF & AF (JCA-F) PN , the optimal
observability is resolved without difficulty.

Proposition 6. (Júlvez et al., 2004) Let N be a
continuous JCA-F Petri net and p a measured
place. Let p′ be a place such that a path from p′

to p exists, then p′ is structurally observable (the



marking of p′ can be computed using the marking
of p for any λ, the firing rates of the transitions).

The marking of place p′ can be computed going
backwards on the path. Beginning with place p,
in each step the marking of a previous place is
computed.

Corollary 7. Let 〈N , λ,m0〉 be a weighted T-
system. Then 〈N , λ,m0〉 is observable for any
initial marking iff all synchronization places are
measured or, in the case of weighted cycle, one
arbitrary place.

Definition 8. Let N be a continuous Petri net.
The set of places F = {p ∈ N |p• = ∅ or (p•)• =
∅} is called set of final places.

Theorem 9. Let 〈N , λ,m0〉 be a JCA-F Petri
net system. If F 6= ∅, minimum cost of the
observability is w(F); otherwise the system is a
cycle and measuring the place with minimum cost
guarantees observability.

Proof: Assume first that N is not a cycle.
The final places are essential covers so must be
included in the solution; obviously there is a
backward path from a final place to any place
of the PN and, according with Prop. (6), the
marking of all places can be evaluated.

When F is empty, the system is a cycle (Teruel et
al., 1997) and measuring one place the system is
observable.

5.3 General nets (JC-F case):nets with attribution

The observability problem of general nets was
reduced to that of JC-F nets in Sect. 5.1. The
remaining problem is to deal with attributions be-
cause they introduce zeros in the transfer function
that can produce a cancellation.

Let us now consider the JC-F Petri net in Fig.1(a)
(it has an attribution in p1). Assume that p1

is measured. This system is a continuous time-
invariant linear system. If we consider that the
input of the system is f5 and the output f1, the
equivalent linear system ẋ(t) = A · x(t) + B ·
u(t),y(t) = S · x(t) has:

A =







−λ1 λ2 λ3 0
0 −λ2 0 λ4

0 0 −λ3 λ4

0 0 0 −λ4






,

B = ( 0 0 0 1 )
T

,S = ( λ1 0 0 0 )

(4)

The transfer function vector between the state
variables and the output, using Equation (3) is:

Y(s) =
λ1

(s + λ1)(s + λ2)(s + λ3)(s + λ4)
HT

(5)

H =







(s + λ2) · (s + λ3) · (s + λ4)
λ2 · (s + λ3) · (s + λ4)
λ3 · (s + λ2) · (s + λ4)

λ4 · (λ2 · (s + λ3) + λ3 · (s + λ2))
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Fig. 2. (a) A PN observable for any initial mark-
ing if all places are measured; (b) JF net, not
observable measuring p5 or p3 but observable
measuring both (λ3 = λ4 and λ5 = λ6).

In Equation (5), if λ2 = λ3 there is a pole-zero
simplification in all elements of vector Y(s) that
leads to the conclusion that the system is not
observable (Sinha, 1984). If λ4 = 2·λ2·λ3

λ2+λ3

there
is another simplification and the system is not
observable. Consequently, observability is a global
property for an attribution.

Returning to the PN in Fig.1(a), p1 should be
measured. If λ2 = λ3 we are forced to measure
p2 or p3 and obviously we should choose the one
with minimum cost. Unfortunately this simple
rule cannot be always applied. For example, the
net presented in Fig.1(b) with λ2 6= λ3 and

λ4 = λ5 = 2·λ2·λ3

λ2·λ3

is observable if p4 is measured,
but is not observable if the measured place is p5

although these places make an attribution to p2.

Clearly, if after eliminating all the synchroniza-
tions and measuring all places in F , the observ-
ability matrix has full rank, F is the solution. If
not, it means that there are attributions that are
not observable and we should measure more places
to obtain an observable system. Unfortunately,
the selection of extra places is difficult and in
practice may be an exponential problem.

Let us consider the net in Fig.2(b) and assume
λ3 = λ4, λ5 = λ6 and the other λs different.
Measuring D1 = {p4} or D2 = {p3, p5} the system
is observable. If w(D2) < w(D1) then the optimal
solution is D2, even if |D2| > |D1|.

Proposition 10. Optimal cost solution need not to
be of minimal cardinality.

Definition 11. The subnet 〈ta, pa, tb, pb, ..., ty, py,
tz, pz〉 and the arcs connecting those places and
transitions is an incoming branch of place p if:

• |•p| > 1
• ta

• = p, pa
• = ta

• · · ·
• •pz = ∅ or |•pz| > 1 or •(•pz) ⊆
{pa, pb, · · · , py}



Let Gj
pi

be the places belonging to the incoming
branch number j (j ≤ |•pi|) of the attribution pi.
Evidently, only one place per Gj

pi
can belong to

the optimal solution (if two places were observed,
one could be deduced from the other so it would
not be optimal).

In the same way we can define the final incoming
branch of every place in F and GF all places be-
longing to these branches. Places GF are estimated
using the final places, so can be removed from the
sets Gj

pi
.

Considering again the net in Fig.2(b), we have
G1

p1
= {p3, p1}, G2

p1
= {p2}, G1

p2
= {p5, p1}, G2

p2
=

{p4, p6, p1} and F = ∅. Assume λ5 = λ6 and the
other λs different. Measuring p3 ∈ G1

p3
the system

is not observable (p1 and p2 can be evaluated, but
the attribution in p2 is not observable because
λ5 = λ6). So, considering p1 ∈ G1

p1
is a waste

of time because the system cannot be observable.
For G2

p1
the system is again not observable (p2 is

an attribution and λ5 = λ6). Measuring p5 ∈ G1
p2

,
the system is observable and also, for p4 and p6

from G2
p2

.

Three places which make the net system observ-
able were found: p4, p5 and p6. If the minimum
measuring cost of these places is w(p6) the solu-
tion can be this one. So, it is obvious that it is
essential to check the observability for all places
in a Gj

pi
(p6 is not the first place of G2

p2
), but an

important observation appears:

Proposition 12. If the net system is not observ-
able measuring a place from a Gj

pi
then it is not

observable for all places situated upstairs in Gj
pi

.

The maximum number of places that can be in the
optimal solution is |F| plus the number of incom-
ing branches. The optimal observability becomes
a SCP; taking one or zero places belonging to a
Gj

pi
, all sets should be evaluated. Two methods

can solve the problem: starting with one place,
then two and so on, or starting with the maximum
number of places that can belong to a solution and
going backwards until one place is taken.

Definition 13. A set of k places Ck is called a set
of admissible places if ∀p1, p2 ∈ Ck and ∀Gj

pi
we

have |{p1, p2} ∩ Gj
pi
| ≤ 1.

Proposition 14. Let Ck and Cl (k ≥ l) be two sets
of admissible places such that any place from Cl

either is in Ck or there exists a path from it to
a place in Ck. If the net system is not observable
measuring Ck then is not observable measuring Cl.

Proof: Measuring Ck all places Cl can be
evaluated and obviously, if the net system is
not observable measuring Ck it is not observable
measuring Cl.

5.4 Computation Algorithm

The results presented in this section allows to de-
velop an algorithm for the optimal observability.
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Fig. 3. Petri net modelling a table factory.

Proposition 14 suggests that the best way is to
start with the maximum number of places that
can belong to the solution in order to limit the
number of searches. For every set of admissible
places Ck, the observability is checked, if the net
system is observable then Ck is introduced into a
set S, if not, the set is introduced into I such that
any other set Cl defined as in Prop. 14 will not be
taken in the future.

Input〈N , λ,m0〉
Output Optimal solution of the observability
1. Transform a general net N into a JC-F by
removing all synchronizations and merging all
transitions in conflict.
2. Compute the set F .
if 6 ∃ attributions (Th. 9 applies) then

if F = ∅ (it is a cycle) then
return one place with minimum cost.

else return F and w(F).
end if

else
if OF (obs. matrix measuring F) has full
rank then

return F and w(F)
else

Compute the sets Gj
pi

− GF (called G)
S := ∅
I := ∅
for all i = |G| : −1 : 1 do

for all Ci such that 6 ∃Cj ∈ I
verifying Prop. 14 do

r := rank(ϑCi∪F)
if r = n then Insert Ci into S

S = S − {Cj |Ci ⊂ Cj}
else Insert Ci into I

end if
end for

end for
Get the set from S with minimum cost.

end if
end if

Therefore, all combinations of places that make
the system observable are computed and the set
with minimum cost is taken. The complexity of
the algorithm remains exponential but in practice
the number of covers has been considerably re-
duced. The places from one incoming branch are
taken in the order that were defined (pa, pb, ...,
pz) such that, if the system is not observable, we
stop advancing in this incoming branch.



5.5 Case studies

The small FMS presented in Fig. 3 was selected
as an illustrative example and consists of three
different machines to make table-legs, one (t1)
which produces two legs at a time, and two (t7 and
t8) which make legs one by one; A machine (t3)
to produce the table-boards; A machine (t5) to
assemble four legs and a board; And a big painting
line (t6) which paints two tables at once. The
painting line has more capacity than the other
machines, so more unpainted tables are brought
(t4) from a different factory. The different prod-
ucts are stored in buffers: Table-legs are stored
in p5, the ones produced by the slow machines
are first stored in p2 and have to be taken to p5

(operation t2), boards are stored in p6, and p7 is
devoted to the storage of unpainted tables. The
rest of places contain work orders: Whenever the
painting line finishes a couple of tables, it delivers
work orders to the leg-makers, the board-maker,
and the other factory. Moreover, 50% of the tables
are assembled, and 50% are brought from the
other factory, while 50% of the legs are produced
by the fast leg-maker, and 50% by the slow ones,
half and half.

Assume that we want to apply a desired control
of the system and for this control the system
observability is required. The number of clients
in each buffer can be measured with a sensor,
the cost of the sensor depends on the buffer. We
want to know what is the minimum amount of
money that we should invest to make the system
observable.

Let us apply the algorithm presented in Sub-
section 5.4 assuming λ = 1. After removing
the synchronization, F = {p5, p6} and GF =
{p5, p6, p3, p7, p4}. Measuring p5 and p6 the sys-
tem is not observable then we need compute the
input branches that are: p1 → p4, p2, p8 → p4 and
p9 → p4 with G1

p5
− GF = {p1}, G2

p5
− GF = {p2},

G1
p2

− GF = {p8} and G2
p2

− GF = {p9}. C1
4 =

{p1, p2, p8, p9} ensures the observability (together
with F) so S = {C1

4}. In the second step, C1
3 =

{p1, p2, p8}, C2
3 = {p1, p2, p9}, C3

3 = {p1, p8, p9}
and C4

3 = {p2, p8, p9} are introduced into S and
C1
4 is removed. For i = 2, the sets of places

that ensure the observability are: C1
2 = {p1, p8},

C2
2 = {p1, p9}, C3

2 = {p2, p8} and C4
2 = {p2, p9}.

After this step, S = {C1
2 , C2

2 , C3
2 , C4

2} and I =
{C5

2 , C6
2}, where C5

2 = {p1, p2} and C6
2 = {p8, p9}.

For i = 1 the system is not observable for any
set of admissible places so the optimal solution
is w(p5) + w(p6) + min(w(p1) + w(p8), w(p1) +
w(p9), w(p2)+w(p8), w(p2)+w(p9)). The number
of covers for the SCP in Section 4 is restricted to
the number of different places combinations. To
solve the problem is necessary to explore 2m −
1 = 29 − 1 = 511 combinations, while with this
algorithm observability was checked only 16 times.

6. CONCLUSIONS

Optimal observability of continuous PNs has
been considered in this paper. Given a measuring

cost per place, the problem is to find a cheaper
set of places that makes the system observable. It
can be viewed as a set covering problem, thus it is
NP-hard; the purpose of this paper was to develop
a covering algorithm capable to deal in practice
with the problem. To do this, optimal observ-
ability was studied for different classes of PNs.
In the case of JCA-F PNs the problem can be
solved in polynomial time. In a general case, which
can be reduced to the JC-F PNs, the problem is
exponential but the considerations presented in
this paper reduce drastically the practical size.

In this paper we have focused on infinite servers
semantics. It seems difficult to extend these results
to finite servers, because this semantics provides
much less information since the flow of a transition
does not depend on the marking of its input
places, as long as it is greater than zero or receives
an input flow. However, more in depth study is
needed. More work is also needed to understand
how these results are related to observability of
the underlying discrete systems.
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