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Abstract: In this paper, we propose a new chaotic itinerant model of mode
transition dynamics in human circulatory systems. An essential emphasis of the
model is on autonomous mode transition based on chaotic itinerancy of large-scale
nonlinear systems. It is shown that the model possesses some important properties
observed in the circulatory systems, such as mode transition and its controllability.
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1. INTRODUCTION

In human circulatory systems, behavior of time
series of observable variables such as heart rate
and blood pressure is changed depended on physi-
ological conditions such as “sleep,” “exercise,” and
“rest”(Narita et al., 2004b). The specific behaviors
for different conditions can be referred to dy-
namical modes, and changes from specific modes
into another may be regarded as mode transition.
Thus, it might be useful to build a model that pos-
sesses an analyzable mode transition dynamics for
revealing complex control mechanisms of human
circulatory systems, in which the control mecha-
nism may be adjusted according to the changes of
specific conditions(Narita et al., 2004a).

A possible model of such mode transition may
include specific functions of dynamics that are
potentially required for different modes. Then we

just select a function among those candidates cor-
responding to the specific mode. It is expected,
however, that such switching mechanism that fol-
lows mode transition can be very complicated for
controlling human circulatory systems as large-
scale nonlinear systems.

On the other hand, chaotic itinerancy(Kaneko,
1990) is one of plausible models of such complex
mode transition. The chaotic itinerancy can be
observed in nonlinear systems with large degree
of freedom and its behavior is more complex than
that of chaotic one with relatively small degree
of freedom. An advantage of the chaotic itiner-
ancy model is in its simple rule to generate such
complex dynamics. Fortunately, even the behavior
is defined by a simple rule, chaotic itinerancy
possesses an autonomous and complex mode tran-
sition dynamics intrinsically.



In this paper, we propose a novel chaotic itinerant
model to analyze such complex mode transition
dynamics in human circulatory systems. Then we
develop a control mechanism of the autonomous
mode transition of the proposed model by using
external inputs that can be generated by the
autonomous nerve system in the circulatory sys-
tems. Simulation results demonstrate usefulness
and plausibility of the proposed chaotic itinerant
model.

2. CHAOTIC ITINERANT MODEL

Chaotic itinerancy can be defined as complex
dynamics of such a system in which (i) state
variables of the system stay in one of pseudo
stable modes, or pseudo and sub-attractors for a
while, and then (ii) transit to the other mode
autonomously through chaotic complex orbits.
Chaotic itinerancy can be observed in many non-
linear systems with large degree of parameter
freedom(Kaneko, 1990; Tsuda, 1991; Ikeda et
al., 1989). In this section, we will describe chaotic
itinerant behavior briefly by using a globally cou-
pled map first, and then the new model will be
proposed to control the autonomous mode transi-
tion of complex physiological dynamics.

2.1 Globally coupled map

Globally coupled map (GCM)(Kaneko, 1990) is
defined as

si(t + 1) = (1 − ε)g (si(t)) +
ε

N

N∑
j=1

g (sj(t)) (1)

where si, i = 1, 2, . . . , N , are outputs of mapping
units, N is the number of units, t = 0, 1, 2, . . .
denote discrete time, ε, 0 ≤ ε ≤ 1, is a positive
constant, and g(.) is a chaotic mapping function,
respectively.

The first term of the right-hand side in Eqn.
(1) implies asynchronous behavior because of the
chaotic function, while the second term of the
right-hand side synchronizes the states by the
mean field. Thus, a wide range of dynamical
behavior from synchronous to asynchronous or
chaotic one can be observed by changing the
parameter value ε of the GCM system. Let us
introduce a notion of “cluster” implying a set
of states that are synchronized with each other,
and the number of clusters in the GCM at time
t, C(t). Note that the number of clusters repre-
sents the dynamic mode of the GCM. We can
observe chaotic itinerancy in the time series of
the number of clusters C(t) if the parameter ε
is appropriate for the mapping function g (see

Fig. 1). That is, the system stays in one of pseudo
stable modes for a duration, where the number
of clusters C(t) is stable or a constant, and then
transit autonomously to another mode through
chaotic complex orbits in which almost all the
units behave asynchronously and the number of
clusters C(t) is the number of units N approxi-
mately.

2.2 Proposed model

Chaotic itinerancy implies autonomous mode
transition, but if it is completely “autonomous” or
out of control without respect to the physiological
conditions, it might not be desirable for a model
of human circulatory systems. In this paper, we
propose a novel model that not only involves au-
tonomous mode transition of chaotic itinerancy,
but also can control the mode transition by using
external inputs representing physiological condi-
tions.
Let us use the following logistic map with a pa-
rameter a and the external input as the chaotic
function g(.) in Eqn. (1)

g(s) = 1 − (a − I(t)) s2 ≡ 1 − a,s2 (2)

where a, = a − I(t). Dynamic complexity of the
function is depended on the parameter a,(Kaneko
and Tsuda, 1996). Thus, we can control the asyn-
chronous or chaotic contribution to the GCM by
changing the external input I(t). For example, if
we choose a = 1.90, a large input makes the sys-
tem be in a synchronous mode where the number
of cluster is steady and small. In the following,
autonomous model behavior without the external
inputs and controlled behavior by using exter-
nal inputs will be compared first, then the mode
transition control mechanism will be developed by
using the external control inputs.

2.2.1. Autonomous behavior Let us consider
an autonomous behavior of the system with no
external input I(t) = 0. Fig. 1 shows the number
of clusters C(t), as a function of time t, of the
system with N = 10, a = 1.90, and ε = 0.186.
Note that chaotic itinerancy in the time variation
of the number of clusters can be observed. That
is, the number of clusters is steady for a short
period, but at the same time it is unstable for a
long-term.

2.2.2. Controlled behavior with external inputs
Fig. 3 shows the number of clusters C(t), as a
function of time t, of a system controlled by the
external input I(t) as shown in Fig. 2. The other
conditions are the same as in Section 2.2.1. The
result implies that the number of clusters can be
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Fig. 1. Autonomous behavior without external
input I(t) = 0. Chaotic itinerancy can be
observed in time variation of the number of
clusters of the system with N = 10, a = 1.90,
and ε = 0.186.
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Fig. 2. The external input I(t) as a function of
time t.
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Fig. 3. Controlled behavior by the external input
I(t) �= 0 shown in Fig. 2. Controlled mode
transition can be observed in time variation
of the number of clusters of the system with
N = 10, a = 1.90, and ε = 0.186.

stable for a steady input value and changed from a
steady value to another according to the changes
of the inputs through the chaotic or asynchronous
mode, in which the number of clusters C(t) = N
approximately. In other words, the autonomous
mode transition of the GCM system in Eqn. (1)
can be controlled by using the external input.

2.2.3. Mode transition control mechanism In
general, it is almost impossible to represent all
the time series of any dynamics by using only a
GCM system defined as Eqns. (1) and (2). Thus
we need another model to represent a desired
time series of target systems in which chaotic
itinerancy can be observed. The proposed idea for
implementing a desired time series of the chaotic
itinerant system is to change the dynamic mode of
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Fig. 4. The block diagram of the proposed mode
transition control mechanism.

the target system autonomously by using complex
mode transition of the GCM in Eqns. (1) and
(2). In other words, we separate the representing
systems f and g of the target time series from a
mode transition mechanism of chaotic itinerancy.
The block diagram of the mode transition control
mechanism proposed in this paper is depicted in
Fig. 4. Let us consider an n dimensional system
given as

{
x(t + 1) = f(x(t), u(t))

y(t) = g(x(t), u(t)) (3)

where

x(t) = [x1(t) x2(t) . . . xn(t)]T ∈ �n (4)

u(t) = [u1(t) u2(t) . . . ur(t)]T ∈ �r (5)

y(t) = [y1(t) y2(t) . . . ym(t)]T ∈ �m (6)

f(x, u) = [f1(x, u) f2(x, u) . . . fn(x, u)]T ∈ �n (7)

g(x, u) = [g1(x, u) g2(x, u) . . . gm(x, u)]T ∈ �m (8)

Here x denotes the state vector, u denotes the
input vector, y denotes the output vector, and
fp, gq, p = 1, 2, · · · , n, q = 1, 2, · · · , m, are
nonlinear functions. Let us control the parameter
of the system by using the number of clusters of
the GCM given in Eqns. (1) and (2). Suppose that
fp in Eqn. (7) is given as a linear formation

fp(x, u) = ap1x1 + ap2x2 + · · · + apnxn

+ bp1u1 + bp2u2 + · · · + bprur (9)

System functions f j
p , j = 1, 2, . . . , m correspond-

ing to specific modes of the number of clusters can
then be given as

f j
p(x, u) = aj

p1
x1 + aj

p2
x2 + · · · + aj

pn
xn

+ bj
p1

u1 + bj
p2

u2 + · · · + bj
pr

ur (10)

Here if there are functions hj
pk

, Hj
pl

, of the number
of clusters Cj corresponding to mode j such that

aj
pk

= hj
pk

(Cj), k ∈ {1, 2, . . . , n}
bj
pl

= Hj
pl

(Cj), l ∈ {1, 2, . . . , r} (11)



then any time series that can be generated by
such system fi can be formulated as a control-
lable dynamics by using the proposed model with
external inputs. Much the same is true on g. We
will demonstrate this controllable chaotic itiner-
ant behavior in the following simulation studies.

3. SIMULATION STUDIES

3.1 Mode transition control for Rössler system

As a target system of Eqn. (9) in continuous time
domain, we consider the following Rössler system
given as

dx/dt =−y − z (12)

dy/dt = x + ay (13)

dz/dt = b + z(x − c) (14)

Let us define the parameters of the system by
using the notation in Eqn. (11) as

a = 0.36

b = 0.4

c = C(t)

where C(t) is the number of clusters of the GCM.
In this simulation, we used the same changes of
external inputs and the corresponding number of
clusters C(t) shown in Figs 2 and 3, respectively.
Figs. 5 and 6 show the attractor of the controlled
Rössler system and its time series of one of the
states, x(t). To measure time variation of the
dynamical complexity, we calculated the largest
Lyapunov exponent λ(Yano et al., 2002) that can
be given as an average exponential expanding
rate of the maximum direction of the orbit in
the state space. The largest Lyapunov exponent
λ is 0.031 for duration 0 ≤ t < 10000 where the
number of cluster C(t) = 1, representing mode
1. λ = 0.049 for 10000 ≤ t < 30000 and for
40000 ≤ t < 50000 where C(t) = 2, representing
mode 2, and λ = 0.107 for 30000 ≤ t < 40000
where C(t) = 3, representing mode 3, respec-
tively. We can see that modes of time series and
the largest Lyapunov exponent follow the source
mode transition represented by the changes of the
number of clusters of the GCM.
As is clear from the result, the proposed model can
generate a chaotic time series of Rössler system,
and its intrinsic autonomous mode transition can
be controlled by using external inputs. Accord-
ingly, if we use another system instead of Rössler
system considered in this example, we can develop
such autonomous and controlled behavior for any
target systems as well. In the next example, in
order to apply the proposed control mechanism to
a practical problem, a model of human circulatory
systems will be considered.
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Fig. 5. Attractor of the controlled Rössler system.
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Fig. 6. Time series of the x(t) of the controlled
Rössler system.

3.2 Mode transition control for a model of human
circulatory system

Let us consider a Windkessel model as a model
of human circulatory systems(Cavalcanti and Be-
lardinelli, 1996). The block diagram of the model
with three elements is illustrated in Fig. 7.

The three elements of the model are a peripheral
resistance R, an arterial compliance Ca, and an
aorta characteristic impedance r. In this model,
the circulatory system can be represented by an
electrical circuit model of which input is aortic
flow Q and output is aortic pressure P . Then, the
three-element Windkessel model can be given as

dPs(t)
dt

=− 1
RCa

Ps(t) +
1

Ca
Q(t) (15)

P (t) = Ps(t) + rQ(t) (16)
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Fig. 7. The block diagram of the three-element
Windkessel model.



where Ps denotes a state variable of the system
(Cavalcanti and Belardinelli, 1996). As shown in
Fig. 7, cardiac cycle T and systolic output SV are,
respectively, given as sigmoid functions of arterial
pressure BP

T = fT (BP ) = Ts +
Tm − Ts

1 + γe−α BP
Pn

(17)

SV = fSV (BP ) =
SVmax

1 + β(BP
Pv

− 1)−k
(18)

where

Ts = 0.66[s]

Tm = 1.2[s]

Pn = 89[mmHg]

α = 31

γ = 6.7 × 1013

SVmax = 86[cm3]

Pv = 25[mmHg]

β = 72

k = 7

The constant values given above are physiologi-
cally plausible(Cavalcanti and Belardinelli, 1996).
In this case, we can make graphs of these functions
fT and fSV as shown in Figs. 8 and 9, respectively.

Let us define the system parameters followed by
the notation given in Eqn. (11) as
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Fig. 8. Cardiac cycle T as a sigmoid function of
arterial pressure BP .
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Fig. 9. Systolic output SV as a sigmoid function
of arterial pressure BP .
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Fig. 10. The external input I(t) as a function of
time t.
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Fig. 11. Time variation of the number of clusters
of the system with N = 10, a = 1.90, and
ε = 0.186, controlled by the external input
shown in Fig. 10.

R = 1160 + 120/C(t)[dyns/cm5]

Ca = 1 × 10−3[cm5/dyn]

r = 52[dyns/cm5] (19)

In this simulation, we used the changes of ex-
ternal inputs I(t) and the corresponding number
of clusters C(t) shown in Figs. 10 and 11, re-
spectively. Anterior half of external inputs I(t) in
Fig. 10 is corresponding to human rest state, and
posterior half of external inputs I(t) in Fig. 10
is corresponding to human load state. Also, the
time delay in Fig. 7 was set to 2.5. Fig. 12
shows the attractor of the controlled Windkessel
model. Arterial pressure BP , heart rate HR, and
systolic output SV as functions of time t are,
respectively, shown in Figs. 13, 14, and 15. The
largest Lyapunov exponent λ is 3.7206 for dura-
tion 0 ≤ t < 100 where C(t) = 1, representing
mode 1. λ = 6.8375 for duration 100 ≤ t < 200
where C(t) = 3, representing mode 2. We can
see that the orbit in the attractor suggests that
existence of the controlled mode transition. The
trajectories of mode 1 for 0 ≤ t < 100 and mode
2 for 100 ≤ t < 200 are shown as bold and
thin lines in Fig. 12, respectively. Accordingly, the
controlled mode transitions can be observed in
the time series of states BP , HR, SV , and the
dynamical complexity λ(t). The transition of the
largest Lyapunov exponent from 3.7206 (mode 1)
to 6.8375 (mode 2) implies that behavior in mode
1 is more periodic or simple than that of mode 2.
The periodicity can be observed in the anterior



part of the time series of BP, HR, and SV as
shown in Figs. 13, 14, and 15, respectively. That
is, the time series are more complex after the mode
transition at t = 100.
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Fig. 12. Attractor of the controlled Windkessel
model.
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Fig. 13. Time series of the arterial pressure BP (t)
of the controlled Windkessel model.
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Fig. 14. Time series of the heart rate HR(t) of the
controlled Windkessel model.
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Fig. 15. Time series of the systolic output SV (t)
of the controlled Windkessel model.

4. CONCLUSIONS

In this paper, we have developed a new chaotic
itinerant model for mode transitions control. Sim-
ulation results demonstrate that the intrinsic au-
tonomous mode transition of some target systems
can be controlled by external inputs.
Since there is no model that possesses such com-
plex mode transition explicitly, the goal of most
of conventional control systems applied to human
circulatory systems is to keep the system being
steady in a fixed mode such as a rest condition.
On the other hand, the proposed model possesses
a controllable autonomous mode transition in-
trinsically. Note that the autonomous behavior is
unique and completely different from the other
models. It might be expected that we can develop
a control system that is not only to keep a steady
state, but also to apply to such complex mode
transition. To achieve this, relations between state
variables of the circulatory systems and the dy-
namical modes are needed to be investigated more
clearly.
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