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Abstract: This paper describes an analysis of balance control of humanoid robot
based on ZMP feedback control. The purpose of this paper is to make clear
understanding of ZMP control problem which is composed by inverted pendulum
control and ZMP compensation control. This paper shows that this problem can
be formulated as high gain output feedback and the existence of zero dynamics in
closed loop system. This paper also shows stability condition of zero dynamics, and
then stability of zero dynamics and closed-loop systems are analyzed using root
locus. From the root locus analysis, the guidelines on finding state and output
feedback gain which achieve good performance of control system, are shown.
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1. INTRODUCTION
Zero Moment Point(ZMP) principle proposed by
Vukobratovic to consider stability of leg systems
(Vukobratovic et al. (1975)), is defined as the
point in the ground where the resultant moments
to system are zero. Even if the stability based
on ZMP only describes contact condition between
foot and the ground, ZMP based controller is
mainly used in humanoid robot communities be-
cause it is known to work well experimentally.
In most of cases, the trajectories of humanoid
robot are designed offline, and then controller is
designed to track these trajectories. However even
if stable trajectories are used, the existence of im-
pulse disturbances on foot’s sole can make robot
to tumble. In many cases, stability of humanoid
robot is also maintained by ZMP based controller,
and one of methods which is known to work well
is ZMP controller composed by inverted pendu-
lum and ZMP compensation control (Nagasaka
et al. (1999)). Inverted pendulum control is used
to generate desired ZMP so that balance can be
maintained while ZMP compensation control is
used to track desired ZMP.

Balance can be maintained using ZMP based con-
troller, however the meaning of ZMP controller is
not clearly understand. Thus, controller param-
eters need to be adjusted frequently and experi-
mentally. And because there is also feedthrough
term from postural acceleration input (θ̈) to
ZMP(p), balance stability of closed loop system
is difficult to analyze.
From the facts described above, this paper refor-
mulates balance stabilization based on ZMP con-
troller composed by inverted pendulum and ZMP
compensation control, and proposes a guideline
to decide controller parameters in designing ZMP
controller in real application. Stability analysis of
closed loop system is also described using root
locus method.
This paper considers humanoid robot with com-
pliances in sole of foot, and these compliances
are used to reduce the impact effects in recent
humanoid robot platform. By adopting compli-
ances to the model, the analysis of balance sta-
bility can be conducted easily because there is no
feedthrough term appear from postural accelera-
tion input (θ̈) to ZMP (p).
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Fig. 1. Inverted pendulum model

2. INVERTED PENDULUM CONTROL AND
ZMP COMPENSATION CONTROL

This paper considers balance control based on
ZMP principle composed by inverted pendulum
and ZMP compensation control, and theoretically
similar to the one conducted by Nagasaka (Na-
gasaka et al. (1999)) and HONDA P3 robot (Hirai
et al. (1998)). ZMP controller is mostly design
using 1 link inverted pendulum model as shown in
Fig.1 which describes dynamics of center of mass
(COM). This section describes a brief overview of
controller design based on ZMP.
Humanoid robot can move in θ direction, and
assume that total mass of humanoid robot is
M and concentrated at position l from ankle.
Equation of motion can be described as,

Ml2θ̈ − Mgl sin θ = τ, (1)

where, g and τ are gravitational acceleration
and equivalent torque to move COM respectively.
Since moment inertia of inverted pendulum is
always positive, then transformation from input τ
to postural acceleration θ̈ always exist, so between
τ and θ̈ can be described as one-to-one mapping.
Thus, besides considering torque τ as the input
to the system, it is equivalent to consider postural
acceleration θ̈ as input of the system. In the fol-
lowing formulation, postural acceleration is used
as input to the system.
In humanoid robot model described above, p is the
position of ground reaction force which describes
ZMP. Linearizing equation of motion, ZMP (p)
can be expressed as,

p = lθ − l2

g
θ̈. (2)

And equivalent torque (τ) and ZMP (p) have the
following relation,

p = − 1
Mg

τ. (3)

2.1 Inverted pendulum control
Inverted pendulum control is used to maintain
balance stabilization, and controller is designed
by considering ZMP (p) as the input to stabilize
inverted pendulum. From Eqn. (2), considering
the following dynamics,

lθ̈ = θ − g

l
p, (4)

and desired ZMP(pd) which stabilizes inverted
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Fig. 2. Block diagram of inverted pendulum con-
trol and ZMP feedback control of humanoid
robot

pendulum can be set using state feedback as
follows,

pd = −f̃1θ − f̃2θ̇, (5)
where, f̃1 and f̃2 are state feedback gains.

And then, balance stabilization is realized by
tracking actual ZMP of robot to desired ZMP, and
it is conducted by ZMP compensation control.
2.2 ZMP compensation control
ZMP compensation control is used to track de-
sired ZMP (pd) set by inverted pendulum control.
ZMP compensation control is conducted by con-
sidering postural acceleration as the input, and
difference between actual and desired ZMP is fed-
back as,

θ̈ = −k̃(p − pd), (6)
where, k̃ is output feedback gain and high gain

feedback is mostly used. ZMP (p) is as described
in Eqn. (2).
2.3 Combination of inverted pendulum control
and ZMP compensation control
Using inverted pendulum control and ZMP com-
pensation control, define ξ̃ as new variable which
describes difference between actual and desired
ZMP,

ξ̃ := p − pd = (l + f̃1)θ + f̃2θ̇ − l2

g
θ̈. (7)

And then considering postural acceleration θ̈ as
input to system, entire system can be formulated
in unified form as follows,

(
Ã B̃

C̃ D̃

)




d

dt

[
θ

θ̇

]
=

[
0 1
0 0

] [
θ

θ̇

]
+

[
0
1

]
θ̈,

y =
[
l + f̃1 f̃2

] [
θ

θ̇

]
+

[
−l2/g

]
θ̈,

θ̈ = −k̃y,
(8)

where, y := ξ̃ is output of the system and input
of the system (θ̈) is obtained by output feedback.
Block diagram of this formulation can be shown
in Fig.2, and there is feedthrough term from input
θ̈ to ZMP (output (y)) which makes the closed
loop system difficult to analyze. That is why, state
feedback gain f̃1, f̃2 and output feedback gain k̃
are difficult to find analytically and in most of
cases it is required to find these feedback gains
experimentally.

3. HUMANOID ROBOT MODEL WITH
COMPLIANCES

Humanoid robot model considered in this paper
is shown in Fig.3 and has compliances in sole
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Fig. 3. COM model of humanoid robot with com-
pliances

of the foot. Humanoid robot composed by many
links can be described using dynamics of center of
mass(COM) and can be represented using 1 link
inverted pendulum model. The compliances are
modelled using linear spring. In this model, robot
can move in θ and φ direction. It is assummed
that moment inertia of robot is J1 and total
mass is M and concentrated at position l from
ankle. Compliances are composed by 2 springs
whose coefficients are K1 and K2 respectively, and
are placed at position r1 and r2 from center of
the foot. Reaction force by compliances can be
calculated as (K1r

2
1 + K2r

2
2)φ and to simplify the

formulation, define K := (K1r
2
1 + K2r

2
2). Gray

part in Fig.3 is foot and has moment inertia J2

but the mass is neglected. Displacement of φ can
not be measured, but it is assummed that force
sensor is set up in sole of foot, so that ground
reaction torque can be measured.
Equation motion of humanoid model mentioned
above can be described as,

J1(θ̈ + φ̈) = τ + Mgl sin(θ + φ), (9)

J2φ̈ =−τ − Kφ. (10)

Eqn.(9) expresses the dynamics of COM, τ and
g are equivalent torque to move COM and grav-
itational acceleration respectively. Eqn. (10) ex-
presses the dynamics of foot.
Using force sensor, ground reaction torque can be
measured, however it does not describe ground
reaction torque of COM but describes reaction
torque from compliances in sole of foot. Thus,
ground reaction torque can be described as,

τ̄ = −Kφ. (11)

The ground reaction torque (τ̄) and measured
ZMP p̄ have proportional relation and based on
linearization of the model, this relation can be
described as follow which shows that ground re-
action force τ̄ and ZMP are equivalent.

p̄ = − 1
Mg

τ̄ . (12)

Using Eqn.(10) and Eqn. (11), and using postural
acceleration as the input, equation motion of
ground reaction torque can be described as,

¨̄τ = − KMgl

J1 + J2
θ − Mgl − K

J1 + J2
τ̄ +

KJ1

J1 + J2
θ̈. (13)

Define postural angle and velocity, ground reac-
tion torque and its derivative as states of the
system, the dynamics of entire system can be
described in state space form as,

(A, B)





d

dt




θ

θ̇
τ̄
˙̄τ


 =




0 1 0 0
0 0 0 0
0 0 0 1
a1 0 a2 0







θ

θ̇
τ̄
˙̄τ


 +




0
1
0
b1


 θ̈,

(14)
where, a1 := −KMgl

J1+J2
, a2 := −Mgl−K

J1+J2
and b1 :=

KJ1
J1+J2

.

4. FORMULATION OF ZMP CONTROL
PROBLEM

In this section, formulation of ZMP control prob-
lem of humanoid robot with compliances is de-
scribed based on description in section 2. How-
ever, besides using ZMP (p) treated in section 2,
ground reaction torque (τ̄) treated in section 3 is
used instead. This ground reaction torque (τ̄) is
measured using force sensor, and in the following
description τ̄ is called ZMP.
As described in section 2, desired ZMP (τ̄d) can
be set as a function of COM states, using state
feedback gain f1, f2 as parameters, desired ZMP
(τ̄d) can be set as,

τ̄d = −f1θ − f2θ̇. (15)

And then balance stabilization is maintained
by tracking real ZMP to desired ZMP, and it is
conducted using ZMP compensation control as
described in section 2 using high gain feedback
by considering postural acceleration as the input
as follows,

θ̈ = −k(τ̄ − τ̄d). (16)

Define new variable ξ as difference of actual and
desired ZMP,

ξ := τ̄ + f1θ + f2θ̇. (17)

Tracking condition of actual ZMP to desired ZMP
(τ̄ → τ̄d ) can also be described as ξ → 0 at
t → ∞.
Thus, balance stabilization of humanoid robot
based on inverted pendulum control and ZMP
compensation control can be described as output
zeroing control of the following system using high
gain feedback,

(
A B
C 0

)




dx

dt
= Ax + Bu

y =
[
f1 f2 1 0

]
x,

u = −ky,

(18)

where, x := [θ, θ̇, τ̄ , ˙̄τ ]T , u := θ̈, y := ξ.
Output feedback gain k corresponds to high gain
feedback to make output y = 0. Inverted pendu-
lum control of the system to generate desired ZMP
has characteristic that feedback of ˙̄τ is not used.
Zeroing the output of the system will make actual
ZMP tracks desired ZMP, however the system
described in Eqn. (18) is 4th order system, and
relative degree of output function is 1. Thus when



actual ZMP completely tracks desired ZMP, there
will be 3 dimensional zero dynamics occurred as
internal dynamics.
Balance stabilization based on ZMP principle is
conducted by tracking actual ZMP to desired
ZMP, as a consequence ground reaction force in
the sole is controlled, and from Eqn.(11), it means
that displacement of foot φ is controlled.
By considering compliances in humanoid robot
model, feedthrough term from postural acceler-
ation (θ̈) to ZMP (p) does not appear in the for-
mulation of ZMP control problem. Thus, balance
stability analysis is easy to handle from control
point of view.

5. STABILITY OF ZERO DYNAMICS
Since relative degree of output function in the
system formulated in previous section is 1, when
output of system completely y = 0, there will
be 3 dimensional zero dynamics in the system.
Then the behavior of system is decided by this
zero dynamics, thus it is needed to consider the
stability of zero dynamics. In linear system, zero
dynamics corresponds to zeros of the system, so
there will be poles of the system which converges
to point at infinity.
Since there are free parameters f1 and f2 in the
system, zero dynamics will vary depends on these
free parameters. Thus, it is needed to use appro-
priate state feedback gain. The zero dynamics of
the system can be described as,

f2(J1 + J2)s3 + (f1(J1 + J2) + J1K)s2+
f2(K − Mgl)s + f1(K − Mgl) − MglK = 0.

(19)

Using Routh-Hurwitz stability criterion, neces-
sary and sufficient condition of stability of zero
dynamics can be described as,

f1 >
MglK

K − Mgl
,

f2 > 0.
(20)

However because of nonlinearity and friction, bal-
ance stabilization can not be maintained only by
choosing high gain feedback which fulfills above
condition. Furthermore, it is difficult to find feed-
back gains which conduct good performance in
stabilizing inverted pendulum. Thus, it is needed
to find appropriate state feedback gain f1, f2 and
output feedback gain k, and in this paper the
guideline of choosing these parameters is proposed
by focusing on the following items.

• The behavior of zero dynamics is considered
based on compliances change K, and then
guidelines to decide state feedback gain f1

and f2 are provided (section 6).
• The behavior of closed loop system is consid-

ered based on output feedback gain k, and
then guidelines to decide output feedback
gain k is provided (section 7).

Table 1. Robot parameters in analysis

Total mass(M) 50.0 [kg]

gravitational acceleration(g) 9.8 [m/s2]

Length of link(l) 1.0 [m]

Moment inertia of link(J1) 50.0 [kg.m2]

Moment inertia of foot(J2) 0.3 [kg.m2]

To conduct root locus analysis, humanoid robot
parameters described in Table 1 are used.

6. ANALYSIS OF ZERO DYNAMICS
CONSIDERING COMPLIANCES CHANGE

Zero dynamics from Eqn.(19) can be rewritten in
the following form,

f2(J1+J2)s3+f1(J1+J2)s2−f2Mgls−f1Mgl+
K(J1s

2 + f2s + f1 − Mgl) = 0. (21)

When K → 0, the dynamics D(s) := f2(J1 +
J2)s3 + f1(J1 + J2)s2 − f2Mgls − f1Mgl = 0
becomes dominance, and this part is called com-
pliance mode. Thus, compliance mode corresponds
to humanoid robot which has very flexible com-
pliances in sole. In this mode, the poles of zero
dynamics can be described as,

p1,2,3 = −f1

f2
,±

√
Mgl

J1 + J2
. (22)

On the other hand, when K → ∞, the dynamics
N(s) := J1s

2 +f2s+f1−Mgl = 0 becomes domi-
nance, and this part is called rigid mode (inverted
pendulum mode). Thus, inverted pendulum mode
corresponds to humanoid robot which has rigid
foot. This mode is equivalent to inverted pendu-
lum mode in Nagasaka (Nagasaka et al. (1999)),
and the poles of zero dynamics can be described
as,

z1,2 =
−f2 ±

√
f2
2 − 4J1(f1 − Mgl)

2J1
. (23)

Since root locus of Eqn.(21) and N(s)/D(s) co-
incides, the behavior of root locus of N(s)/D(s)
is considered, and then the root locus is classified
depend on the shapes with state feedback gain f1

and f2. This classification is described below.
First, from necessary and sufficient condition that
zero dynamics become stable, the boundary of
stable area and unstable area can be described
as,

a : f1 =
MglK

K − Mgl
(24)

f1 > (MglK)/(K − Mgl) represents stable area,
while f1 < (MglK)/(K −Mgl) represents unsta-
ble area.
Then, the poles of inverted pendulum mode z1, z2

can have complex or real number, from Eqn.(23)
the boundary of complex and real area can be
described as,

b : f1 =
1

4J1
f2
2 + Mgl (25)

f1 > f2
2 /(4J1) + Mgl represents complex area,

while f1 < f2
2 /(4J1) + Mgl represents real area.
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Then, if z1, z2 are real, then feasible positonal
relationship between z1, z2 p1, p2 and p3 can be
shown in Fig.4(a). Using Eqn.(22) and Eqn.(23)
the boundary of this positional relationship can
be described as,

c : f1 =
√

Mgl

J1 + J2
f2 (26)

d : f1 =
√

Mgl

J1
f2 (27)

e : f1 =
√

Mgl

J1 + J2
f2 + Mgl − MglJ1

J1 + J2
(28)

Furthermore if z1, z2 are complex number, shape
of root locus changes depend on convergence angle
of zero dynamics to poles of inverted pendulum z1,
z2. This convergence angle can be found using the
following formula (T. Sugie (2001)),

αj = 180◦ +
3∑

i=1

6 (zj − pi)−
∑

i6=j

6 (zj − zi), (29)

where, pi, zj are as described in Eqn.(22) and
Eqn.(23). From this results, complex area of poles
of inverted pendulum mode z1, z2 can be parti-
tioned into 4 areas depend on convergence an-
gle shown in Fig.4(b). Each boundary of area
is difficult to describe as a function of feedback
gain f1 and f2, in this paper this area is found
numerically.
Stability of zero dynamics is analyzed by varying
the value of K and focusing on the motion of
root locus of poles of zero dynamics in each area.
The analysis which is conducted here, corresponds
to changing the value of K → ∞ to K = 0.
The result is explained below, and to distinct
the plot, poles of inverted pendulum model is
represented by mark © and poles of feedback
mode is represented by mark ×.

• Area A1: In this area, poles of inverted pen-
dulum mode are complex, and convergence
angle is −90◦ < α < 0◦. By changing the
value of K, root locus is shown in Fig.5(a).

• Area A2: In this area, poles of inverted pen-
dulum mode are complex, and convergence
angle is 0◦ < α < 90◦. By changing the value
of K, root locus is shown in Fig.5(b).

• Area A3: In this area, poles of inverted pen-
dulum mode are complex, and convergence
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Fig. 5. Root locus of zero dynamics

angle is 90◦ < α < 180◦. By changing the
value of K, root locus is shown in Fig.5(c).

• Area A4: In this area, poles of inverted pen-
dulum mode are complex, and convergence
angle is 180◦ < α < 270◦. By changing the
value of K, root locus is shown in Fig.5(d).

• Area B: In this area, poles of inverted pen-
dulum mode are real, and convergence angle
is 0◦ and 180◦. By changing the value of K,
root locus is shown in Fig.5(e).

• Area C: In this area, poles of inverted pen-
dulum mode are real, and convergence angle
is 0◦ and 180◦. By changing the value of K,
root locus is shown in Fig.5(f).

• Area D: In this area, poles of inverted
pendulum mode are real, and convergence
angle is 0◦ and 180◦. By changing the value
of K, root locus is shown in Fig.5(g).

• Area E: In this area, poles of inverted pen-
dulum mode are real, and convergence angle
is 180◦ and 180◦. By changing the value of
K, root locus is shown in Fig.5(h).

• Area F : In this area, poles of inverted pen-
dulum mode are real, and convergence angle
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Fig. 7. Root locus of closed loop system

is 0◦ and 0◦. By changing the value of K,
root locus is shown in Fig.5(i).

• Area G: In this area, poles of inverted pen-
dulum mode are real, and convergence angle
is 0◦ and 180◦. By changing the value of K,
root locus is shown in Fig.5(j).

Eventually the shapes of root locus of zero dy-
namics can be classified into 10 areas as shown in
Fig.6.
From analysis results of root locus of zero dy-
namics, to realize balance stabilization based on
ZMP principle, area A4, B, D and F can be
considered to have relative good performance. In
these areas, degradation from compliances effect
can be suppressed. And since poles of the system
which converge to point at infinity only 1, it is
always move to stable direction.
From graphs of root locus, there is one unstable
pole in inverted pendulum mode, and the bound-
ary value of this pole can be found using Routh-
Hurwitz stability criterion, and if the value of
compliance K fulfills the following condition, then
system becomes unstable.

K <
f1Mgl

f1 − Mgl
(30)

This boundary condition is shown in the graphs
by mark 4.

7. ANALYSIS OF ZERO DYNAMICS
CONSIDERING OUTPUT FEEDBACK

To maintain balance stabilization, it is needed
to conduct output zeroing control of the system
described in Eqn.(18). It is realized using output
feedback corresponds to minor feedback, and it
is known that balance stabilization can be main-
tained using output feedback only (Nagasaka et al.
(1999)).
Using u := −ky = −kCx as the input, then
characteristics equation of closed loop system can
be described as,

s4 +
K − Mgl

J1 + J2
s2 +

k

J1 + J2
(f2(J1 + J2)s3+

(f1(J1 + J2) + J1K)s2 + f2(K − Mgl)s+
f1(K − Mgl) − MglK) = 0. (31)

When k → ∞, the dynamics N(s) := f2(J1 +
J2)s3 + (f1(J1 + J2) + J1K)s2 + f2(K −Mgl)s +
f1(K − Mgl) − MglK = 0 becomes dominance,
and this dynamics describes zero dynamics ana-
lyzed in section 6.
On the other hand, when k → 0, the dynamics
D(s) := s4 +(K −Mgl)/(J1 +J2)s2 = 0 becomes
dominance, and the poles of control system can
be found as,

s1,2,3,4 = 0, 0,±
√

K − Mgl

J1 + J2
i. (32)

Consequently, considering behavior of root locus
of N(s)/D(s), output feedback gain k is varied.
Root locus of control system when 2 types of state
feedback gain are selected, is shown in Fig.7(a)
and Fig.7(b). Here, poles of zero dynamics is
represented by mark ©, and poles of control
system when k → 0 is represented by mark ×.

From these results, it is needed to used output
feedback gain k as big as possible. In this case,
control system becomes stable and degradation
of system response by compliances can be mini-
mized.

8. CONCLUSIONS
This paper analyzed balance stabilization of hu-
manoid robot based on ZMP principle. Balance
stabilization problem based on ZMP principle
is formulated by inverted pendulum control and
ZMP compensation control, and can be described
as output zeroing control and the existence of zero
dynamics. The condition to stabilize total system
is derived and the guidelines to choose controller
parameters are proposed based on root locus anal-
ysis of zero dynamics and control system.
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