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Abstract: In this paper, we study the almost sure stability of continuous-time jump
linear systems with a finite-state Markov form process. A sufficient condition for
almost sure stability is derived that refers to the statistics of the transition matrix
over m switches. It is shown that, if the system is exponentially almost sure stable,
there exists a finite m such that the criterion is satisfied. In order to evaluate the
expected value appearing in the condition, an efficient Monte Carlo algorithm is
worked out.Copyright c©2005 IFAC
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1. INTRODUCTION

Markov Jump Linear Systems (MJLS) are a class
of stochastic hybrid systems in which the switches
between different linear systems are governed by
a finite-state Markov chain. They are well suited
to represent dynamic systems subject to random
switches between alternative configurations. As
such, they are used to model technological and
economic systems, including failure-prone plants
and communication lines subject to random de-
lays, (Chizeck et al., 1986; Mariton, 1990; Krtolica
et al., 1991; Fang et al., 1991; Gomez-Puig and
Montalvo, 1997).

The stability theory of MJLS is rather complex
in that there exist several stability notions that
differ in conservativeness as well as ease of testa-
bility. The most important stability notions are
Mean-Square (MS) stability, moment stability,
and Almost Sure (AS) stability. MS-stability has
to do with the asymptotic convergence to zero
of the second moment of the state norm. There
exist necessary and sufficient conditions involving
either the solution of coupled Lyapunov equa-
tions or the location in the complex plane of
the eigenvalues of suitable augmented matrices,



(Feng et al., 1992; Fang et al., 1994; Fang and
Loparo, 2002b).

Moment stability, also called δ-moment stability,
requires the convergence to zero of the moment of
order δ (MS-stability is just a particular case for
δ = 2). Although there exist some practical suffi-
cient conditions, a simple necessary and sufficient
condition for testing δ-moment stability (except
for δ = 2) is not available.

Finally, AS-stability holds if the sample path
of the state converges to zero with probability
one. Checking AS-stability involves the determi-
nation of the sign of the top Lyapunov exponent,
which is usually a rather difficult task (Arnold
et al., 1986; Fang and Loparo, 2002a). In prac-
tice, one may exploit the fact that δ-moment
stability implies AS-stability and that, for δ tend-
ing to zero, AS and δ-moment stability become
equivalent, (Feng et al., 1992; Fang et al., 1994).
However, in view of the lack of simple necessary
and sufficient conditions for δ-moment stability,
the problem of assessing AS-stability in the least
conservative way is still open. In practical applica-
tions the most useful notion would be AS-stability
because it guarantees the convergence of almost
all realizations of the sample path. Conversely, δ-
moment stability may be too conservative. Suffi-
cient conditions for AS-stability that do not rely
on δ-moment stability are reported in (Costa and
Fragoso, 1995), (Fang, 1997).

With reference to discrete-time MJLS, the authors
of the present paper have recently derived a family
of criteria for testing AS-stability whose conser-
vativeness can be made arbitrarily small at the
expense of computational complexity, (Bolzern et
al., 2004). A sufficient condition for AS-stability
is applied to a lifted representation over m steps
of the original MJLS. It has been proven that if
the system is AS-stable, a finite m exists such that
the criterion is fulfilled. As the lifting horizon m
grows, it becomes necessary to resort to a Monte
Carlo strategy in order to calculate the expected
value appearing in the stability criterion.

The extension of these recent results to the
continuous-time case is all but straightforward.
In fact, a lifted representation over a given
time-interval would yield an infinite-state Markov
chain. For this reason, a different approach is pur-
sued in the present paper. A condition for testing
the contractivity of the MJLS after m switches
is applied. Such a contractivity depends on the
expected value of the logarithm of the norm of
the transition matrix, an expectation that can
be calculated only by means of a Monte Carlo
strategy. The Monte Carlo algorithm requires

only the stochastic simulation of m switches of
the continuous-time Markov chain and is stopped
when a prescribed confidence on the fulfilment of
the criterion has been reached. It is shown that,
if the MJLS is AS-stable, there exists a finite
value of m such that the contractivity condition is
satisfied. In other words, the sufficient condition
asymptotically approaches necessity.

The paper is organized as follows. In Section
2, some basic definitions are recalled. The new
AS-stability condition is worked out in Section
3, while Section 4 deals with the randomized
algorithm. An illustrative example is discussed in
Section 5. The paper ends with some concluding
remarks (Section 6).

2. CONTINUOUS-TIME MJLS -
PRELIMINARIES

Consider the continuous-time Markov jump linear
system (MJLS)

ẋ(t) = A(σ(t))x(t) (1)

where x(t) ∈ IRn, and the form process σ(t) is a
finite-state, time homogeneous, Markov stochas-
tic process taking values in a finite set S =
{1, 2, . . . ,M}, with stationary transition probabil-
ities Pr{σ(t+h) = j|σ(t) = i} = qijh+o(h), i 6= j,
where h > 0, and qij is the transition rate from
mode i at time t to mode j at time t + h. Letting

qii = −
M∑

j=1,j 6=i

qij

and defining Q = [qij ], the matrix Q is called
the infinitesimal generator of the Markov process.
Let τk, k = 0, 1, . . . be the successive sojourn
times between jumps. Then, assuming that after
the k-th jump the system stays in mode i, τk

is exponentially distributed, with parameter λ =
−qii. Given an initial probability distribution

π0 = [ π01 π02 . . . π0M ]′

π0i := Pr{σ(0) = i}, the probability distribu-
tion π(t) obeys the differential equation π̇(t) =
Q′π(t). Under the assumption that the Markov
process is irreducible (see e.g. (Bremaud, 1998)),
there exists a unique invariant distribution π̄ =
[ π̄1 π̄2 . . . π̄M ]′ to whom π(t) converges for any
π(0). Such a distribution provides the steady-
state probability distribution for the (ergodic)
form process σ(t). Hereafter, it is assumed that
the Markov process is irreducible.

In the following, Φ(t, τ) will denote the state
transition matrix over the interval [τ, t]. Note that



Φ(τ, t) depends on the time history of the form
process σ(t), and, as such, is a random matrix.

Definition 2.1. The MJLS (1) is said to be (expo-
nentially) almost surely stable (AS-stable) if there
exists ρ > 0 such that, for any x(0) ∈ IRn and any
initial distribution π(0), it results that

Pr{lim sup
t→∞

1
t
ln‖x(t)‖ ≤ −ρ} = 1
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It is immediate to see that Definition 2.1 implies
that Pr{limt→∞ ‖x(t)‖ = 0} = 1, i.e. almost all
realizations of the stochastic process x(t) converge
to zero. Moreover, it is well known (Fang, 1994)
that the system is exponentially AS stable if and
only if λ̄ = E[λ] < 0, where λ is the top Lyapunov
exponent, i.e.

λ = lim sup
t→∞

1
t
ln‖Φ(t, 0)‖

It is worth pointing out that the above limit
converges almost surely to λ̄, irrespective of the
initial probability distribution π(0).

The analysis of almost-sure stability of system (1)
can be addressed by using the concept of matrix
measure (see e.g. (Desoer and Vidyasagar, 1975)).
The matrix measure µ(A) of a square matrix A is
defined as

µ(A) = lim
T→0

‖I + AT‖ − 1
T

(2)

where I is the identity matrix. A simple interpre-
tation is that the measure µ(A) is the derivative of
the norm of exp(At) at t = 0. It is easy to see that,
if µ(A) < 0, then A is ”instantaneously norm-
contractive”, and, consequently, Hurwitz stable. If
the matrix norm used in (2) is the usual spectral
norm, µ(A) coincides with λmax(A+A′)/2, where
λmax denotes the maximum eigenvalue (see e.g.
(Desoer and Vidyasagar, 1975)).

In (Fang and Loparo, 2002b), the following suffi-
cient condition for AS-stability can be found.

Proposition 1. If
M∑

i=1

π̄iµ(Ai) < 0, then the MJLS

(1) is AS-stable. 2

Such a condition is tantamount to requiring that
Eπ̄ [µ(A(σ))] < 0, namely that the system is ”in-
stantaneously norm-contractive” on the average.
As is well known, the condition of Proposition 1
is not in general necessary, with the exception of
one-dimensional systems.

3. MAIN RESULT

In this section, we will work out a new sufficient
condition for AS-stability that is less restrictive
than Proposition 1. The key idea is to consider the
evolution of the state x(t) over an interval of time
corresponding to m transitions and to impose that
the system is average norm-contractive over such
an interval. To this aim, define Tm =

∑m−1
k=0 τk,

T0 = 0 as the (random) time to the m-th tran-
sition, and recall that Φ(Tm, 0) is the (random)
state transition matrix over the interval [0, Tm].

Given the continuous-time Markov process σ(t),
the associated discrete-time Markov chain σk =
σ(Tk) is called embedded Markov chain (Bremaud,
1998). This discrete-time Markov chain describes
the time evolution of the form process at the
commutation instants, and it is characterized by
the transition probabilities

pij = Pr{σk+1 = j|σk = i} =

{
−qij

qii
, i 6= j

0 , i = j

The invariant probability distribution of the em-
bedded Markov chain is denoted by ϑ̄, and its
entries are

ϑ̄i =
π̄iqii∑M

j=1 π̄jqjj

Now, we are in a position to prove the new
sufficient condition for AS-stability.

Proposition 2. System (1) is AS-stable if, for some
integer m > 0,

Eϑ̄ [ln‖Φ(Tm, 0)‖] < 0 (3)

Proof. In the proof, exponential AS stability will
be established by showing that the top Lyapunov
exponent λ̄ is negative. To this end, we first
recall a technical result presented in (Fang, 1994).
Precisely, in view of ergodicity,

λ̄ =
1
τ̄

lim
k→∞

1
k

Eϑ̄[ln‖Φ(Tk, 0)‖] (4)

where

τ̄ = E[τ ] > 0, τ = lim
k→∞

Tk

k
a.s.

Now, let k = Nm+h, 0 ≤ h ≤ m− 1 and observe
that

1
k

Eϑ̄[ln‖Φ(Tk, 0)‖] =
1

Nm + h
Eϑ̄[ln‖Φ(Tk, 0)‖]

≤ 1
Nm + h

Eϑ̄ [ln‖Φ(Th, 0)‖]

+
1

Nm + h
Eϑ̄




N∑

j=1

ln‖Φ(Tjm+h, T(j−1)m+h)‖





=
1

Nm + h
Eϑ̄[ln‖Φ(Th, 0)] +

Nᾱ

Nm + h

where

ᾱ = Eϑ̄[ln‖Φ(Tm, 0)‖] < 0 (5)

Then, taking the limit as N →∞, it is immediate
to see that

λ̄ ≤ ᾱ

mτ̄
< 0 (6)
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By increasing m, a sequence of sufficient condi-
tions is obtained. The following result shows that,
if the system is AS-stable, it suffices to check only
a finite (yet unknown) number of such conditions.

Proposition 3. System (1) is exponentially AS-
stable if and only if there exists a finite value of
m such that condition (3) holds.

Proof. The sufficiency part coincides with Propo-
sition 2. As for necessity, assume that system (1)
is AS-stable. Then λ̄ < 0, and, in view of (4),
there exists a finite k̄ such that, for any m ≥ k̄,
condition (3) holds.

4. RANDOMIZED ALGORITHM FOR
ASSESSMENT OF ALMOST SURE

STABILITY

When applying condition (3), one is faced with
the problem of calculating the expected value. An
exact formula is not available, so that a Monte
Carlo strategy is proposed.

First of all, the user has to select a confidence level
δ (e.g. δ = 0.01). The quantity 1− δ is the degree
of belief that has to be reached before a decision is
taken that condition (3) is fulfilled or not. Then,
for a given m ≥ 1, the decision algorithm is as
follows.

• Step 0: let j = 1, ȳ0 = γ2
0 = 0, and let N1

be a large integer;
• Step 1: simulate m steps of the joint process
{σk, τk}, using the invariant distribution ϑ̄
as the initial distribution for σ0; in this
way, the sequence {σ0, τ0} . . . {σm−1, τm−1}
is generated;

• Step 2: compute yj = ln‖Φ(Tm, 0)‖, where
Φ(Tm, 0) is the state transition matrix;

• Step 3: compute

ȳj =
1
j

((j − 1) ȳj−1 + yj)

γ2
j =

1
j

(
(j − 1) γ2

j−1 + y2
j

)

sj =
√

γ2
j − ȳ2

j

• Step 4: if j ≥ N1 then compute

zj = − ȳj

sj

√
j

Letting F (z) be the standard normal proba-
bility distribution function,
− if F (zj) > 1 − δ, then decide that

condition (3) is fulfilled; end
− if F (zj) < δ, then decide that condition

(3) is not fulfilled; end
• Step 5: let j = j + 1 and go to Step 1.

Remark 4. The simulation of the joint process in
Step 1 can be performed as follows. At the k-th it-
eration, let i = σk denote the current logical state.
First compute the sojourn time τk by drawing
from the exponential distribution with parameter
|qii|. Then, the destination state σk+1 is drawn
from the embedded discrete distribution pij . This
procedure is legitimate because the sojourn time
and the destination state can be proven to be
statistically independent.

Remark 5. The decision strategy underlying the
algorithm relies on the Bayesian paradigm. More
precisely, a decision is taken when the poste-
rior probability that (3) holds becomes either
greater than 1 − δ or less than δ. To this pur-
pose, we exploit the fact that, for large samples,
the posterior distribution of the expected value
Eπ̃ [ln‖Φ(Tm, 0)‖] becomes normal with expecta-
tion equal to the sample mean ȳj and variance
s2

j/j. To be sure that the sample size is large
enough for the normal approximation to hold, we
introduced a minimum sample size N1, that has
to be reached before any decision is taken.

In the algorithm, it is assumed that the prior
distribution of the samples yj is normal with zero
mean and infinite variance so that the posterior
depends only on the extracted samples. In absence
of a-priori information, it is reasonable to assume
a prior with large (or infinite) variance, so that
the posterior depends solely on the data yj . In
practice, taking N1 equal to some hundreds may
suffice.

Remark 6. It should be noted that the decision
algorithm terminates with probability one, pro-
vided that Eπ̃ [ln‖Φ(Tm, 0)‖] 6= 0. Indeed, when
such expectation is nonzero, the absolute value
of the random variable zj tends to infinity with
probability one.



Remark 7. When the algorithm terminates with
the decision that the condition (3) is not fulfilled,
this by no way means that the system is not AS-
stable. Rather, it is worth running the algorithm
again with a larger value of m. In doing this, one
may exploit the data generated with the previous
value of m, extending the simulations of Step 1 by
adding one more transition of the Markov chain.

Remark 8. The randomized algorithm hinges on
the estimation of ᾱ, defined in (5). In view of
(6), testing the negativity of ᾱ is equivalent to
testing the negativity of an upper bound of the top
Lyapunov exponent. One may want to compare
the proposed algorithm with the direct estimation
of the top Lyapunov exponent from a single real-
ization of the stochastic process, by exploiting the
asymptotic convergence property (4). The main
difficulty is to provide a confidence level of the
estimate. Conversely, the generation of indepen-
dent samples yj carried out within the randomized
algorithm opens the way to the assessment of
confidence levels by invoking the central limit the-
orem. In conclusion, it appears that many short
independent realizations are more effective than a
single long realization.

5. EXAMPLE

As an example, consider the MJLS (1) with M =
2, and

A(1) =
[

2 0
0 −1

]
, A(2) =

[−15 1
0 −2

]
,

Q =
[−1 1

5 −5

]

The unique invariant distribution of the continuous-
time form process is π̄ =

[
5/6 1/6

]′, and the
invariant distribution of the embedded Markov
chain turns out to be ϑ̄ =

[
1/2 1/2

]′. First of all,
observe that this system is not MS-stable. In fact,
the matrix A(1) + 0.5q11I is not stable, so that
the necessary condition for MS-stability given in
(Fang, 1994) is violated. Nevertheless, it could be
AS-stable.

Since µ(A(1)) = 2, and µ(A(2)) = −1.9808,
the sufficient condition for AS-stability given in
Proposition 1 is not fulfilled (it results that
π̄1µ(A(1)) + π̄2µ(A(2)) = 1.3365 > 0). Hence,
we apply the randomized algorithm of Section 4
for values of m ranging from 1 to 10. For each
m, the algorithm was run 100 times, letting the
confidence level be δ = 0.01, and the minimum
sample size N1 = 100. The algorithm was stopped
whenever the number j of iterations exceeded

10000. Recalling the rationale of the computa-
tional scheme, this happens when the prescribed
confidence cannot be reached, so that the algo-
rithm keeps on extracting new samples. These
cases have been classified as ND (”not-decided”).
When the algorithm decides that the AS stability
condition (3) is fulfilled, the outcome is classified
as ASD (”almost sure decision”). Conversely, if
it is decided that the AS stability condition (3)
is not fulfilled, the outcome is labelled as NASD
(not ASD).

The results are summarized in Table 1. For each m
the table reports the percentage of ASD, NASD
and ND outcomes. By averaging all the ȳj gen-
erated within the 100 runs, a ”grand-average” ¯̄y
was computed. In turn, this was used to evaluate
¯̄y/(mτ̄), which estimates the upper bound (6) for
the top Lyapunov exponent λ̄. It can be seen (last
column of Table 1) that for the selected values
of m such a bound is still far from converging.
Indeed, by running simulations with much larger
values of m, it was found that the top Lyapunov
exponent is λ̄ ' −0.8. It is remarkable that a
decision on AS stability can be obtained even if
the top Lyapunov exponent is not estimated with
great accuracy.

In view of the results of Table 1, it appears
that the system is actually AS stable. Figure 1
shows a histogram of the values of ȳ calculated
at the end of each experiment for m = 6. Note
that these values are all negative. The number of
realizations over which ȳ is computed in each run
is not fixed, as the algorithm terminates when
the prescribed confidence level is reached. This
explains the nongaussian shape of the histogram
in Figure 1. The lack of values in the neighborhood
of zero is due to the fact that the algorithm is
reluctant to take a decision when ȳ is close to zero,
and keeps on extracting new random realizations
until a clear cut situation is reached.

Table 1. Experimental results of 100
runs of the Monte Carlo algorithm for

different values of m

m % ASD % NASD % ND bound on λ̄

1 0.00 100.00 0.00 1.3235
2 0.00 100.00 0.00 0.2784
3 0.00 100.00 0.00 0.2445
4 6.00 78.00 16.00 0.0330
5 14.00 13.00 73.00 0.0008
6 100.00 0.00 0.00 -0.0958
7 100.00 0.00 0.00 -0.1122
8 100.00 0.00 0.00 -0.1843
9 100.00 0.00 0.00 -0.1976

10 100.00 0.00 0.00 -0.2274
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Fig. 1. Histogram of ȳ in the Monte Carlo algo-
rithm for m = 6

6. CONCLUDING REMARKS

A sufficient condition for almost sure stability of
continuous-time MJLS has been studied. Roughly
speaking, the condition relies on the average con-
tractivity of the system over m transitions. It
is shown that, if the system is AS-stable, there
exists a finite m such that the condition is fulfilled.
Therefore, in some sense, the sufficient condition
approaches necessity as m grows. The computa-
tion is carried out by means of a Monte Carlo
algorithm guaranteeing a prescribed confidence
level. Only the evolution of the logical state is
required in the Monte Carlo simulation. As a by-
product, the algorithm provides also an upper
bound of the top Lyapunov exponent.
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