
H∞–BASED FLOW CONTROL FOR ATM
NETWORKS WITH MULTIPLE

BOTTLENECKS

İnci Munyas–Elmas and Altuğ İftar

Department of Electrical and Electronics Engineering
Anadolu University

26470 Eskişehir, Turkey

imunyas@anadolu.edu.tr aiftar@anadolu.edu.tr

Abstract: In this paper, the implementation of an H∞ controller, designed in
another work for the flow control in communication networks with a single
bottleneck, is considered for asynchronous transfer mode (ATM) networks with
multiple bottlenecks. The controller calculates the data sending rates by using the
information about the queue lengths at the switches. To observe the performance
of the system in real ATM networks, a number of simulations are realised for
certain realistic cases and the results are presented. Copyright c© 2005 IFAC

Keywords: Communication networks, flow control, robust control, time-delay
systems, multiple bottlenecks

1. INTRODUCTION

For any communication network, resource man-
agement, that is, to make the best use of available
resources while guaranteeing the quality of service
for users is the main problem. One aspect of this
problem is traffic management which deals with
developing algorithms to control the traffic in the
network. The traffic management mechanisms are
designed to solve the congestion problem which
may lead to long queueing delays or cell losses.

The ATM Forum defined a flow control framework
for Available Bit Rate (ABR) service which is
a rate–based closed–loop scheme (Bonomi and
Fendick, 1995). The main goal of this scheme
is to fairly allocate the bandwidth leftover from
Constant Bit Rate (CBR) and Variable Bit Rate
(VBR) users to ABR users. The remaining band-
width is distributed to Unspecified Bit Rate
(UBR) users. In the ABR flow control scheme,
the feedback information from the network to
the users is carried by the Resource Management

(RM) cells. However, the existence of the time
delays in transmission and queueing and that the
number of the active and controllable sources are
unknown are the challenges faced in flow control.

There are many papers in the literature dealing
with flow and congestion control, e.g., (Altman et
al., 1998), (Özbay et al., 1998), (Quet et al., 2002),
(BenMohamed and Meerkov, 1993), (Mascolo,
1997), (Gomez-Stern et al., 2002), (Mascolo and
Cavendish, 1996) and the references there in. The
design of a controller for the single bottleneck
case using H∞ control approach is given in (Quet
et al., 2002). The designed controller is robust
to uncertain time-varying multiple time-delays
and forces the queue length at the bottleneck
node to the desired steady-state value asymptot-
ically and also satisfies a weighted fairness con-
dition. Depending on this work, the controller
design for multi–bottleneck networks is given in
(Biberoviç, 2001), (Biberoviç et al., 2001). The
implementation of the controller, the design of
which is given in these works, is presented in

(Munyas et al., 2003). Although the flow control
approach presented and simulated in these works
are for the multi–bottleneck case, it cannot be
directly applied to ABR traffic in ATM networks.
Because, ABR flow control framework has some
special rules to be followed and a very general
network structure is considered in those works.
Also in (BenMohamed and Meerkov, 1997), con-
troller design for the multi–bottleneck case is con-
sidered. However, according to the design method
presented in that work, it is assumed that the
system reaches steady state which may not be a
realistic assumption.

In this paper, a congestion control algorithm for
ATM networks with multiple bottlenecks is con-
sidered. Multiple bottlenecks means that there
may exist more than one bottlenecked output port
at the switches on the path of any connection.
When it is attempted to design an H∞ controller
for this Multi-Input-Multi-Output (MIMO) sys-
tem, it is seen that the resultant mathematical
model of the network is so complex that it is
not feasible (if not impossible) to define an H∞
optimization problem. Thus, the multi–bottleneck
case in the controller design problem is reduced
to the single bottleneck case by making an as-
sumption which does not violate the requirements
of the ABR control framework. Since the H∞
controller for the single bottleneck case, for a
general network structure, has already been de-
signed in (Quet et al., 2002), to implement the
suggested algorithm, that controller is used. The
H∞ controllers are implemented at each output
port of each node and each controller uses the
queue length information of the port at which
it is implemented. Furthermore, to deal with the
case when a bottleneck node becomes a non-
bottleneck, a reset mechanism is also included.
The closed–loop system is simulated for several
cases and the results for two representative cases
are presented.

2. PROBLEM STATEMENT AND
CONTROLLER DESIGN

In this work, a network which consists of l source–
destination pairs communicating over N nodes is
considered. The network traffic consists of flows
corresponding to each source–destination pair,
(s,d). In this way, the traffic sent from multi-
ple users connected to a node s to one or more
users connected to a node d, forms a single con-
nection between s and d. Let C denote the set
of such connections and Cik

be the set of con-
nections traversing the kth output port of the
ith node. Besides, let s(j) and d(j), j ∈ C,
j = 1, . . . , l, denote the source and destination
nodes of the jth connection, respectively. lik

rep-
resents the number of elements in the set Cik

.

Let pj = {N1
j , . . . , N

nj

j }, j = 1, 2, . . . , l, denote
the sequence of the nodes, the path, traversed
by the jth connection where nj is the number of
nodes in pj . For each connection j, rj,0(t) denotes
the traffic demand of s(j). Each node i has buffers
at its output ports for storing packets waiting to
be transmitted. The number of output ports of
node i is denoted by ki while ik represents the kth
output port of node i. Traffic at each output port
is transmitted according to the First-In-First-Out
(FIFO) discipline. s(j) is allowed to send data
through the network with the following rate;

rj,s(t) = min
{

rj,0(t); rj
N1

j

(t− τ j,b
N1

j

(t)); . . . ;

rj

N
nj
j

(t− τ j,b

N
nj
j

(t))
}

, j ∈ C (1)

Here, τ j,b
Nm

j
(t), m = 1, . . . , nj , represents the back-

ward time delay from the mth node in pj to s(j).
rj
Nm

j
(t) is the rate command determined by the

mth node for the jth connection at time t. It
is also assumed that the routing policy is static.
Therefore, the sequence of the nodes and output
ports of the nodes traversed by the connections are
already known. Since each connection uses only
one output port of a node, the command rates
determined by the nodes are actually the rates
calculated by the controller implemented at the
corresponding output port of the node. The dy-
namics of the queue length at ik can be described
as

q̇ik
(t) =

∑

j∈Cik

[
rj,b
ik

(t)− ρj,s
ik,i+

(t)
]

(2)

where i+ denotes the node following node i on
the path of the jth connection. Here, rj,b

ik
(t) is the

rate of data received at ik from the jth source at
time t and ρj,s

ik,i+
(t) is the rate of data, belonging

to the jth connection, sent from ik to the next
node on the path of connection j at time t. The
round trip delay for the jth connection observed
at ik at time t, τ j

ik
(t) := hj

ik
+ δj

ik
(t) where hj

ik

is the nominal part and δj
ik

(t) is the time varying
uncertainty, is defined as τ j

ik
(t) = τ j,b

ik
(t)+ τ j,f

ik
(t).

Here, τ j,b
ik

(t) := hj,b
ik

+ δj,b
ik

(t) is the backward time
delay from the controller at ik to s(j), where hj,b

ik
is

the time invariant known nominal backward delay
and δj,b

ik
(t) is the time varying backward time

delay uncertainty, while τ j,f
ik

(t) := hj,f
ik

+ δj,f
ik

(t) is
the forward time delay from s(j) to ik, where hj,f

ik

is the time invariant known nominal forward delay
and δj,f

ik
(t) is the time varying forward time delay

uncertainty. Moreover, τik,i+ (t) is the time delay
between the kth port of node i and node i+ and
have the same form as the time delays between a
source and a node. Then, the queue length at ik
can be rewritten as follows;

qik
(t) =

∫ t

0

∑
j∈Cik

(
1− δ̇

j,f
i−,ik

(ν)
)

ρ
j,s
i−,ik

(
ν − τ

j,f
i−,ik

(ν)
)

dν

−
∫ t

0

∑
j∈Cik

ρ
j,s
ik,i+

(ν)dν + qik
(0), (3)

where i− denotes the node preceding node i on
the path of the jth connection (for details refer
to (Munyas-Elmas, 2003)). Here, it is assumed
that d

dt (t − τ j,f
i−,ik

(t)) > 0 is satisfied for i =
1, . . . , n, k = 1, . . . , ki and j = 1, . . . , lik

, implying
τ̇ j,f
i−,ik

(t) < 1 or δ̇j,f
i−,ik

(t) < 1.

The rate of data sent from ik to the next node,
ρs

ik,i+
(t), depends on the value of the queue length

at ik;

ρs
ik,i+

(t) =

{
cik

(t) , qik
(t) > 0

min
{

cik
(t) ; rb

ik
(t)

}
, qik

(t) = 0
(4)

where cik
(t) is the capacity of the kth output port

of the ith node at time t. Besides, the rate of that
flow belonging to the jth connection is

ρj,s
ik,i+

(t) =

qj
ik

(t)

qik
(t)

ρs
ik,i+

(t), qik
(t) > 0

rj,b
ik

(t)

rb
ik

(t)
ρs

ik,i+
(t), qik

(t) = 0

(5)

where rb
ik

(t) =
∑

j∈Cik
rj,b
ik

(t) and ρs
ik,i+

(t) =
∑

j∈Cik
ρj,s

ik,i+
(t) are satisfied. It can be seen from

(3) that the queue length at ik depends on the rate
of data sent from the preceding node. However,
this rate depends on the value of the queue length
formed at the output port of the preceding node,
that is, whether the port is a bottleneck or not.
Therefore, when the queue length expression for
an output port is written, it is seen that all
the previous output ports should be checked to
see whether those ports are bottlenecks or not.
This MIMO structure, which originates from the
basics of ABR control framework, is too complex
to define an H∞ optimization problem. Here, if
the output ports which are bottlenecked have
already been known, the source would be allowed
to send data with the rate calculated by the
controller implemented at the most bottlenecked
port. Therefore, each output port on the path of a
connection is let to calculate a rate command for
the source assuming that the most bottlenecked
port is itself. Then, the source is allowed to send
data with the rate equal to the minimum of all
calculated rate commands and the demand of
the source. This strategy complies with the ABR
control framework (see Section 4). In this strategy,
the assumed queue length formed at port ik can
be written as follows,

qdik
− qik

(t)
- m+ - m -

+

−

C1

ik
(s) - P 1

ik
(s) - α1

ik

6

?

- m-
+

−

C
lik

ik
(s) - P

lik

ik
(s) - α

lik

ik

6

6

m+

6

...
...

- r1

ik
(t)

- r
lik

ik
(t)

Fig. 1. The structure of the controller Kik
(s),

(Quet et al., 2002)

PI

K 0 FIR 0

q > 1.5 qd

q > 1.5 qd
+

-

+

-

Fig. 2. Reset mechanism

qik
(t) =

∫ t

0

∑
j∈Cik

(
1− δ̇j,f

ik
(t)

)
rj
ik

(ν − τ j
ik

(ν))dν

−
∫ t

0

ρs
ik,i+

(ν)dν + qik
(0) (6)

From this expression, it is seen that the multi–
bottleneck case in our problem is reduced to
the single bottleneck case. Here, if the solu-
tion given in (Quet et al., 2002) is applied
for each port on the path of each connection,
the H∞ controllers that will be implemented
at these ports can be found. The structure
of the controller at each port ik is given in
Fig. 1. Here, P j

i,k(s) := 1

αj
i,k

s
e−hj

i,k
s and

Cj
i,k(s) =

nαj
i,k

γj
i,k

2

√
2
∑n

j=1

(
δj,+
i,k

)2

(
shj

i,k
− kj

i,k

shj
i,k

)
1

1 + F j
i,k

(shj
i,k

)

(7)

where F j
i,k(shj

i,k) is a finite impulse response
(FIR) filter of duration hj

i,k and kj
i,k and γj

i,k

are constants to be calculated, which depend on
δj,+
ik

, βj
ik

and βj,f
ik

, the assumed bounds on
∣∣∣δj

ik
(t)

∣∣∣,∣∣∣δ̇j
ik

(t)
∣∣∣ and

∣∣∣δ̇j,f
ik

(t)
∣∣∣, respectively. Besides, αj

ik
,

j = 1, . . . , lik
, are the weighted fairness coeffi-

cients given for each port and satisfy
∑lik

j=1 αj
ik

=
1. These coefficients allow the controllers imple-
mented at the ports to allocate different band-
widths for each connection at steady-state (see
(Quet et al., 2002)).

The reset mechanism shown in Fig. 2 is used to
handle the transition from the bottlenecked case
to the non-bottleneck case. When high congestion
occurs at a port, the queue length of this port
grows up to values much larger than the desired

S (1)

S (2)

N_1 N_2 D (1)

D (2)N_3

P1

P2

Fig. 3. Example network model

value of the queue length. Meanwhile, to force the
queue length to its desired value, the command
rate calculated by the controller decreases to very
high negative values. Then, the port becomes non-
bottlenecked. When the queue length begins to
grow again, it is observed that the controller do
not calculate the corresponding positive valued
rates. This situation occurs because it takes a long
time for the controller to recover from those high
negative values. To avoid this situation, the con-
troller is resetted to zero when the queue length
becomes greater than 1.5 times the corresponding
desired value. To solve the problems observed at
the transition from the non-bottleneck case to the
bottlenecked case, a reset mechanism was pro-
posed in (Tiftikçi, 2003). However, with the reset
mechanism presented in the present work, the
problems considered in that work are also avoided.
Considering (7), it is seen that the controller is
formed by cascading a proportional plus integral
(PI) controller with a feedback loop including an
FIR filter on the feedback path. When the condi-
tion qik

> 1.5qdik
is satisfied, the input to the FIR

filter is switched to zero, which nullifies the filter
state in finite-time. In this way, the FIR part does
not have any effect on the output of the controller.
Hence, the controller can be resetted to zero by
making the PI part of the controller track a zero
signal. To achieve this aim, the feedback path
including a gain K is connected to the input of the
PI part of the controller when qik

> 1.5qdik
is sat-

isfied. The gain K should be chosen as positive to
provide stability of the feedback system. Choosing
K large will make the response faster, however,
will increase the sensitivity to disturbances and
measurement noises.

3. SIMULATION RESULTS

To observe the performance of the controllers,
a number of simulations are realised for net-
work models with different number of source–
destination pairs, switches, various parameter val-
ues and network conditions. However, due to space
limitations only two cases are included here. Fur-
ther cases may be found in (Munyas-Elmas, 2003).
In both cases considered here, the network shown
in Fig. 3 is considered. The desired queue lengths
are 30 packets for all output ports. The paths
followed by the connections are:
p1 = {N11 , N21 , d11}, p2 = {N11 , N22 , N31 , d21}
Here, djk

represents the kth port of the destina-
tion node of the jth source.

Table 1. Design parameters.

ik, j hj
ik

δj,+
ik

αj
ik

βj
ik

βj,f
ik

11, 1 1 2 0.6 0.1 0.01
11, 2 2 3 0.4 0.2 0.02
21, 1 1 2 1 0.1 0.01
22, 2 2 3 1 0.2 0.02
31, 2 2 3 1 0.2 0.02
d11, 1 1 2 1 0.1 0.01
d21, 2 2 3 1 0.2 0.02

Table 2. Implementation parameters.

ik, j hj,b
ik

δj,b
ik

hj,f
ik

δj,f
ik

11, 1 0.9 0.5 sin(2π
50

t) 0.1 0.1 sin(π
50

t)

11, 2 1.85 0.5 sin(2π
50

t) 0.15 0.1 cos(π
50

t)

21, 1 0.8 0.5 sin(2π
50

t) 0.2 0.1 sin(π
50

t)

22, 2 1.75 0.5 sin(2π
50

t) 0.25 0.1 cos(π
50

t)

31, 2 1.65 0.5 sin(2π
50

t) 0.35 0.1 sin(π
50

t)

d11, 1 0.65 0.5 sin(2π
50

t) 0.35 0. sin(π
50

t)

d21, 2 1.6 0.5 sin(2π
50

t) 0.4 0.1 sin(π
50

t)

Case 1: The values of the parameters used in the
controller design are given in Table 1 while the
implementation parameters are given in Table 2.
The demands of the sources, r0,1(t) and r0,2(t)
and the outgoing capacities c11(t), cd1(t) and
cd2(t) are the same and equal to 100 p/s. Besides,
c21(t) = 20, c22(t) = 30 and c31(t) = 60 p/s.
The results for this case are given in Fig. 4. As
expected, congestion has occurred at both ports
of the second node. The controllers at these ports
forces the queue lengths to their desired values.
Since all the capacities and demands remain the
same for the rest of time, the queue lengths do not
change.

Case 2: The design and implementation parame-
ters used in this case are the same as the ones used
in Case 1. Different from that case, c21(t) = 25
p/s. and c31(t), cd1(t) and c11(t) are as given in
Fig. 5. When the results, given in Fig. 6, are
considered, it is seen that with the decrement in
cd1(t) after 60 s., d1 becomes the bottleneck after
that moment and hence, q21 decreases to zero. It is
observed that there still exists some changes in q21

corresponding to the changes in qd11
. However, q21

becomes zero after a while since the incoming data
rate to the port 21 becomes smaller than its capac-
ity. Similarly, with the decrement in c31(t) after
75 s., the 3rd node becomes the bottleneck after
that moment and hence, q22 decreases. Although
q22 increases following the decrements in q31 after
some time, it decreases to zero again since the
incoming data rate to the port 22 becomes smaller
than its capacity. Furthermore, a decrement oc-
curs in c11(t) at 100 s. Since c11(t) is the smallest
capacity from that moment on, the queue lengths
of qd11

and q21 decrease to zero and q11 converges
to its desired steady–state. It is observed that
expected command rates reach expected steady–
state values and make the sources share and use
the port capacities accordingly.

From the results of both cases, it is seen that
the reset mechanism work as expected and avoid
the problems occurring at the transitions from
the bottlenecked case to non-bottlenecked case.
Examining the actual sending rates of the sources,
one can observe that the actual sending rate of
each source becomes equal to the rate calculated
by the most congested port, with a delay equal to
the backward delay from that port. Though the
corresponding plots cannot be presented due to
space limitations, the data sending rates from one
port to another are bounded with the outgoing
capacities of the corresponding ports, as expected.

4. IMPLEMENTATION ISSUES

The flow control presented in this work can be
implemented by exactly following the ABR flow
control framework. Each controller, implemented
at an output port of a switch on the path of a
connection, calculates a command rate for the
source and compares it with the rate written in
the Explicit Rate, ER, field of the RM cell. Then,
the controller writes the smaller rate in the ER
field. Meanwhile, the congestion indication, CI,
bit in the RM cell is also checked. If CI = 1 in
an incoming RM cell, this means that congestion
occurs in one of the previous switches. In this case,
the value of the CI bit is not changed and the
RM cell is sent to the next switch. If CI = 0
and the port is itself congested, than the CI bit
is set to 1 and then, the RM cell is sent to the
next switch. As the last step the source compares
the rate written in the ER field with its demand
and adjusts its actual sending rate to the smaller
one. Besides, the resulting actual sending rates of
the sources are bounded, MCR ≤ ACR ≤ PCR
where MCR and PCR are the quality of service
parameters which denote the minimum and peak
cell rates, respectively, while ACR is the allowed
cell rate.

5. CONCLUDING REMARKS

In this work, the H∞ controller designed for a
general communication network with single bot-
tleneck in (Quet et al., 2002) is implemented in
ATM networks with multiple bottlenecks. The
controllers are implemented at each output port of
each switch. The implementation is carried out in
consistence with the ABR flow control framework.
Besides, a reset mechanism is used to avoid the
controllers to calculate high negative valued rates
at the transitions from the bottlenecked to the
non-bottleneck case.

Simulation results show that the controllers force
the queue lengths at the bottleneck ports to their
desired values asymptotically at steady–state. Be-
sides, the data sending rates of the sources are

adjusted to the rates determined by the controller
of the most bottlenecked port and these rates also
satisfy the weighted fairness condition.

REFERENCES

Altman, E., T. Başar and R. Srikant (1998). Ro-
bust rate control for ABR sources. In Proc.
of the INFOCOM’98, San Fransisco, Califor-
nia, U.S.A. pp. 166–173.

BenMohamed, L. and S. Meerkov (1993). Feed-
back control of congestion in store–and–
forward datagram networks: The case of a sin-
gle congested node. IEEE / ACM Trans. on
Networking 1, 693–708.

BenMohamed, L. and S. Meerkov (1997). Feed-
back control of congestion in packet switch-
ing networks: The case of multiple congested
nodes. International Journal on Communica-
tion Systems 10, 227–246.

Biberoviç, E. (2001). Flow control in high–speed
data communication networks. M.S. Thesis.
Anadolu University, Eskişehir, Turkey. (In
Turkish).

Biberoviç, E., A. İftar and H. Özbay (2001). A
solution to the robust flow control problem for
networks with multiple bottlenecks. In Proc.
of the 40th IEEE Conference on Decision and
Control, Orlando, FL, U.S.A. pp. 2303–2308.

Bonomi, F. and K. W. Fendick (1995). The rate–
based flow control framework for the available
bit rate ATM service. IEEE Network Maga-
zine 25, 24–39.

Gomez-Stern, F., J. M. Fornes and F. R. Rubio
(2002). Dead–time compensation for ABR
traffic control over ATM networks. Control
Engineering Practice 10, 481–491.

Mascolo, S. (1997). Smith’s principle for conges-
tion control in high–speed ATM networks. In
Proc. of the IEEE Conference on Decision
and Control, San Diego, California pp. 4595–
4600.

Mascolo, S. and D. Cavendish (1996). ATM rate
based congestion control using a smith pre-
dictor: An EPRCA implementation. In Proc.
of GLOBECOM’96, England pp. 569–576.

Munyas-Elmas, İ. (2003). Developing flow control
algorithms for ATM networks with multiple
bottlenecks. M.S. Thesis. Anadolu University,
Eskişehir, Turkey. (In Turkish).

Munyas, İ., Ö. Yelbaşı and A. İftar (2003). De-
centralized robust flow controller design for
networks with multiple bottlenecks. In Proc.
of the European Control Conference, Cam-
bridge, U.K.

Özbay, H., S. Kalyanaraman and A. İftar (1998).
On rate–based congestion control in high–
speed networks: Design of an H∞ based flow
controller for single bottleneck. In Proc. of the
American Control Conference, Philadelphia,
PA, U.S.A. pp. 2376–2380.

Quet, P.-F., B. Ataşlar, A. İftar, H. Özbay,
S. Kalyanaraman and T. Kang (2002). Rate–
based flow controllers for communication net-
works in the presence of uncertain time–
varying multiple time delays. Automatica
38, 917–928.

Tiftikçi, A. (2003). Improvement of the controllers
used in multiple bottleneck ATM networks.
Graduation Project, Department of Electrical
and Electronics Engineering, Anadolu Uni-
versity, Eskişehir, Turkey.

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

Time in seconds

Q
ue

ue
 le

ng
th

s
in

 p
ac

ke
ts

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Time in seconds

Q
ue

ue
 le

ng
th

 in
 p

ac
ke

ts

q
2

2

q
2

1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time in seconds

C
om

m
an

d
ra

te
s,

 K
1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time in seconds

C
om

m
an

d
ra

te
s,

 K
2

r1
d

1
1

r1
1

1

r1
2

1

r2
1

1

r2
2

2

r2
d

2
1

 = r2
3

1

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Time in seconds

F
lo

w
 r

at
es

 a
t s

ou
rc

es
 1

 a
nd

 2
 in

 p
ac

ke
ts

/s
ec

on
d

rs, 2

rs, 1

Fig. 4. Results for Case 1.

0 20 40 60 80 100 120 140 160 180 200
10

20

30

40

50

60

70

80

90

100

Time in seconds

O
ut

go
in

g
ca

pa
ci

tie
s

fo
r

C
as

e
2

in
 p

ac
ke

ts
/s

ec
on

d

c
3

1

 (t)

c
d

11

 (t)

c
1

1

 (t)

Fig. 5. Outgoing capacities for Case 2.

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

Time in seconds

Q
ue

ue
 le

ng
th

s
in

 p
ac

ke
ts

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time in seconds

Q
ue

ue
 le

ng
th

s
in

 p
ac

ke
ts

q
2

1

q

d
11

q

1
1

q
2

2

q
3

1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time in seconds

C
om

m
an

d
ra

te
s,

 K
1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

Time in seconds

C
om

m
an

d
ra

te
s,

 K
2

r1
d

1
1

r1
1

1

r1
2

1

r2
d

2
1

 = r2
3

1

 r2
3

1

r2
2

2

r2
1

1

r1
d

1
1

r1
1

1

r1
d

1
1

r2
3

1

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

Time in seconds

F
lo

w
 r

at
es

 a
t s

ou
rc

es
 1

 a
nd

 2
 in

 p
ac

ke
ts

/s
ec

on
d

rs, 1

rs, 2

Fig. 6. Results for Case 2.

