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Abstract: The paper presents an adaptive controller design for a class of nonsmooth
systems with uncertainty. The design method is based on the concept of the
Filippov solution since a classical approach can not be applied to establish the
stability of the adaptive control system. It is shown by means of a solid nonsmooth
analysis that the adaptive control system is globally strongly stable and the state
of the controlled system converges to the origin while the uniqueness of the solution
of the closed loop system is not necessarily guaranteed. Copyright c©2005 IFAC.
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1. INTRODUCTION

Control and stability analysis of nonsmooth sys-
tems have attracted considerable research inter-
ests in both mathematical issues and practical
applications. Especially, a characterization of so-
lutions of nonsmooth systems has been proposed
by Filippov, and the existence and uniqueness of
the solution have been also explored (Filippov,
1964). Based on the concept of the Filippov so-
lution, the existence and uniqueness of the solu-
tion of nonsmooth adaptive control systems in-
cluding switching adaptive schemes have been
investigated by Polycarpou et al. (Polycarpou
and Ioannou, 1993). Recently, the existence of
Carathéodory solution of general nonlinear sys-
tems with discontinuous controller has been also
pursued by Kim et al. (Kim and Ha, 2004). These
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papers imply the importance of the solid analysis
of the nonsmooth or discontinuous closed loop
system.

On the other hand, controller designs for nonlinear
systems with nonsmoothness such as stick-slip
motion, backlash, switching control and switch-
ing structure of hybrid systems have been con-
sidered in Filippov’s framework (Paden and Sas-
try, 1987; Polycarpou and Ioannou, 1993; Orlov
et al., 2003; Sekhavat et al., 2004; Alvarez et
al., 2000). Since these results require the pre-
knowledge of the upper and lower bounds of nons-
mooth function, the challenge to adaptive control
is one of future topics. Also a controller design
for hybrid systems such as switched piecewise
continuous affine systems has been proposed by
utilizing a piecewise quadratic Lyapunov func-
tions while the preknowledge of the system ma-
trices is required to solve a linear matrix inequal-
ities (Johansson and Rantzer, 1998; Rantzer and
Johansson, 2000). For adaptive control of nons-



mooth systems, there is a remarkable book by Tao
et al. (Tao and Lewis, 2001). In the book vari-
ous mechanical systems with nonsmoothness are
considered whereas the stability analysis for each
system is individually made by each specialized
methodology.

In this paper, adaptive control of nonsmooth sys-
tems with uncertainty is considered. The sys-
tem, whose uncertainty is linearly parameterized
in an unknown vector and a known discontin-
uous function, is addressed, which is more gen-
eral and comprehensive system than that of (Tao
and Lewis, 2001). For such a nonsmooth system,
generally speaking, the classical stability analysis
(Krstic et al., 1995) can not be applied due to
the presence of the discontinuous function which
may create a sliding motion while our approach
assures the stability during the sliding motion as
well as the non-sliding motion. Besides the stabil-
ity property, the nonsmooth adaptive system has
an interesting nature in comparison to a smooth
adaptive system: Although the uniqueness of the
Filippov solution of the closed loop system is
not necessarily guaranteed, global strong stability
and the convergence of the state of the controlled
system to the origin is achieved. Examples include
a hybrid system with uncertain parameters and a
mechanical system with uncertain discontinuity.
As an application of our design, adaptive control
version of a hybrid system introduced by Branicky
(Branicky, 1998) is considered.

2. PROBLEM STATEMENT

Consider the nonlinear system

ẋ = f(x) + g(x)
(
u + φ(x)θ

)
(1)

where x ∈ R
n, u ∈ R

m, and f : R
n → R

n and
g : R

n → R
n×m are locally Lipschitz on R

n such
that f(0) = 0 and g(x) �= 0 for all x ∈ R

n.
θ ∈ R

p is an unknown vector, and φ : R
n →

R
m×p is a known discontinuous function satisfying

Condition B (See Appendix) and is given by

φ(x) =
{

φ+(x) if S(x) > 0
φ−(x) if S(x) < 0 (2)

where φ+, φ− : R
n → R

m×p are locally Lipschitz,
and S(x) is a smooth function.

The objective of this paper is to show a method
of an adaptive controller design for system (1) in
despite of the discontinuity φ. The adaptive con-
trol problem for system (1) with smooth function
φ has long been studied (Krstic et al., 1995). No-
tice that even if we employ a smooth control law
u = α(x) for system (1), the closed loop system
should be described by the differential inclusion
form

ẋ ∈ K[F ](x) = K[f + g(α + φθ)](x) (3)

due to the presence of the discontinuity φ, where
K[·] is the Filippov set (See Appendix).

Some examples of the system (1) include a hy-
brid system with unknown parameters (Example
2.1) and a mechanical system with discontinuous
physical property (Example 3.1).

Example 2.1. Consider a hybrid system (Branicky,
1998) described by{

ẋ = A1x + u if x ∈ quadrant I or III
ẋ = A2x + u if x ∈ quadrant II or IV (4)

where stable matrices A1 and A2 are given by

A1 =
[ −1 100
−10 −1

]
, A2 =

[ −1 10
−100 −1

]
. (5)

Although the system matrices A1 and A2 are
stable, the response of the free system with u ≡
0 becomes unstable (Branicky, 1998). Hence, to
assure the stability of the system a stabilizing
control law u = α(x) must be applied. If both A1

and A2 are known, we can construct a quadratic
Lyapunov function by means of solving a certain
type of linear matrix inequalities (Johansson and
Rantzer, 1998; Rantzer and Johansson, 2000).
On the other hand, in case that A1 and A2 are
unknown, system (4) can be rewritten as

ẋ = φ(x)θ + u (6)

where

φ(x)=
[

px1 px2 0 0 qx1 qx2 0 0
0 0 px1 px2 0 0 qx1 qx2

]
(7)

p =
1 + sgn(x1x2)

2
, q =

1 − sgn(x1x2)
2

(8)

θT = [a(11)
1 a

(12)
1 a

(21)
1 a

(22)
1 a

(11)
2 a

(12)
2 a

(21)
2 a

(22)
2 ]

a
(jk)
i : (jk) element of Ai.

(9)
In this case the discontinuous surface is given by
S(x) = x1x2 = 0.

3. ADAPTIVE CONTROLLER DESIGN

In this section, we consider the adaptive controller
design for system (1). We now begin to discuss
with the following assumption.

Assumption 1. For system ẋ = f(x) + g(x)u,
there exists a Lipschitz continuous control law
u = α0(x) such that the origin x = 0 is globally
asymptotically stable, that is, f(0) + g(0)α0(0) =
0 and there exists a continuously differentiable
function V0(x) : R

n → R such that

V0(0) = 0 and V0(x) > 0, ∀x �= 0 (10)

‖x‖ → ∞ ⇒ V0(x) → ∞ (11)



V̇0(x) =
∂V0

∂x

(
f + gα0

) ≤ −W (x) < 0, ∀x �= 0

(12)
where W (x) is a continuously differentiable and
positive definite function.

Employing an estimation θ̂(t) and the update law
Φ(x), the control law is given by

u = α0(x) − φ(x)θ̂
˙̂
θ = Φ(x).

(13)

Then, the closed loop system is given by[
ẋ
˙̃
θ

]
= F (x, θ̃) =

[
f + gα0 + gφθ − gφθ̂

−Φ

]
(14)

where θ̃ = θ− θ̂ is the parameter error. As a result
we have the following differential inclusion 2[

ẋ
˙̃
θ

]
∈K[F ](x, θ̃)⊂

[{f+gα0}+K[gφθ]−K[gφθ̂]
−K[Φ]

]
.

(15)

It is very important to notice that in (15) we can
not describe K[gφθ] − K[gφθ̂] as K[gφθ̃] since φ
in (1) is different from φ in (13) in physical terms.
The former φ is of a nature of the system while
the latter φ is of an implementation of an actuator
(See (Yakubovich et al., 2004), pp.12).

Thus, we can not proceed the adaptive controller
design in a classical manner (e.g. (Krstic et al.,
1995)). In order to overcome the difficulty, we split
the stability analysis into two regions

Ω = {(x, θ̃) ∈ R
(n+p) | S(x) = 0}

Ω = {(x, θ̃) ∈ R
(n+p) | S(x) �= 0}. (16)

Theorem 3.1. Consider system (1). Let the adap-
tive control law be given by

u = α0(x) − φ(x)θ̂
˙̂
θ = γ (LgV0φ(x))T (17)

where LgV0 = (∂V0/∂x)g(x). Then, the closed
loop system is globally strongly stable. Moreover
for every solution (x(t), θ̂(t)) ∈ Ξ, where Ξ is a set
of solutions starting from (x(0), θ̂(0)) = (x0, θ̂0),
x(t) converges to 0 as t tends to ∞.

proof: The closed loop system is given by[
ẋ
˙̃
θ

]
∈K[F ](x, θ̃)⊂

[{f+gα0}+K[gφθ]−K[gφθ̂]
−K

[
γ (LgV0φ)T

] ]
.

(18)

2 Throughout the paper, the addition of two sets A ⊆ R
n

and B ⊆ R
n is defined by A + B = {a + b ∈ R

n | a ∈
A, b ∈ B}.

Let V : R
n+p → R be a Lipschitz, regular and

positive definite function given by

V (x, θ̃) = V0(x) +
1
2γ

θ̃T θ̃, γ > 0. (19)

Note that V (x(t), θ̃(t)) is absolutely continuous in
t by Theorem 2.2 in (Shevitz and Parden, 1994).
In what follows we will evaluate the behavior of
V in two regions Ω and Ω, respectively.

(I) The evaluation of V̇ in (x, θ̃) ∈ Ω

Since the discontinuity of the system occurs on
Ω, we treat system (18) as the following usual
differential equation[

ẋ
˙̃
θ

]
= F (x, θ̃) =

[
f + gα0 + gφθ̃

−γ (LgV0φ)T

]
. (20)

Thus, calculating the time derivative of V along
the trajectories of system (20), we obtain

V̇ =
[
∂V0

∂x

1
γ

θ̃T

]
·
[

f+gα0+gφθ̃

−γ (LgV0φ)T

]

≤ −W (x) + LgV0φθ̃ − θ̃T (LgV0φ)T

= −W (x), ∀(x, θ̃) ∈ Ω

(21)

(II) The evaluation of V̇ in (x, θ̃) ∈ Ω

In this case we should pay attention to two situa-
tions, that is, one is that a trajectory (x(t), θ̃(t))
intersects the surface Ω with Lebesgue measure 0
with respect to t, and another is that a trajec-
tory (x(t), θ̃(t)) has a sliding motion on Ω. In the
former case the time derivative of V on a point
of measure 0 does not change and is ignored to
evaluate. Thus, we focus on the latter case here.

S(x) = 0 is a smooth surface which divides the
state space into two domains Ω+ = {(x, θ̃) | S(x) >
0} and Ω− = {(x, θ̃) | S(x) < 0}. Now let
N(x, θ̃) = [n(x)T 0]T be the normal vector to the
surface S(x) at a point (x, θ̃) directed from Ω−

to Ω+. Let (x, θ̃) ∈ Ω, and F−(x, θ̃) and F+(x, θ̃)
be limiting values where (x, θ̃) is approached from
Ω− and Ω+ respectively:

F+(x, θ̃) =
[

f + gα0 + gφ+θ̃

−γ(LgV0φ
+)T

]

F+(x, θ̃) =
[

f + gα0 + gφ−θ̃

−γ(LgV0φ
−)T

]
.

(22)

The projection of F−(x, θ̃) and F+(x, θ̃) to
N(x, θ̃) is defined as

F+
N (x, θ̃) = 〈N(x, θ̃), F+(x, θ̃)〉

= n(x)T (f + gα0) + n(x)T gφ+θ̃

F−
N (x, θ̃) = 〈N(x, θ̃), F−(x, θ̃)〉

= n(x)T (f + gα0) + n(x)T gφ−θ̃.
(23)

According to Lemma 3 in (Filippov, 1964), a
trajectory during a sliding motion is dominated
by the following differential equation



[
ẋ
˙̃
θ

]
=αF+(x, θ̃)+(1−α)F−(x, θ̃), α=

F−
N

F−
N −F+

N

(24)
subject to the constraint F+

N ≤ 0, F−
N ≥ 0 and

F−
N − F+

N > 0. Thus, by substituting (22) and
(23) into (24),

ẋ =
1

nT g(φ− − φ+)θ̃

{
nT g(φ− − φ+)θ̃(f + gα0)

−nT (f + gα0)g(φ− − φ+)θ̃ + nT gφ−θ̃gφ+θ̃

−nT gφ+θ̃gφ−θ̃
}

(25)
˙̃
θ =

−γ

nT g(φ− − φ+)θ̃
·{(

nT (f + gα0) + nT gφ−θ̃
)

(LgV0φ
+)T

−
(
nT (f + gα0) + nT gφ+θ̃

)
(LgV0φ

−)T
}

.

(26)
Now we examine the time derivative of V along
the trajectories of system (25) and (26) during
the sliding motion on Ω. By calculating the time
derivative of V ,

V̇ =
[
∂V0

∂x

1
γ

θ̃T

]
·
[

ẋ
˙̃
θ

]

=
1

nT g(φ− − φ+)θ̃
·

∂V0

∂x

{
nT g(φ− − φ+)θ̃(f + gα0)

−nT (f + gα0)g(φ− − φ+)θ̃ + nT gφ−θ̃gφ+θ̃

−nT gφ+θ̃gφ−θ̃
}

− 1
nT g(φ− − φ+)θ̃

·

θ̃T
{(

nT (f + gα0) + nT gφ−θ̃
)

(LgV0φ
+)T

−
(
nT (f + gα0) + nT gφ+θ̃

)
(LgV0φ

−)T
}

=
nT g(φ− − φ+)θ̃
nT g(φ− − φ+)θ̃

· ∂V0

∂x
(f + gα0)

=
∂V0

∂x
(f + gα0)

≤ −W (x), ∀(x, θ̃) ∈ Ω
(27)

where nT g(φ− − φ+)θ̃ �= 0 for all t on Ω due to
the constraint F−

N − F+
N > 0.

(III) The stability of the adaptive system

From (21) and (27) we can conclude that for
almost all t

V̇ ≤ −W (x) < 0, a.e. t, ∀x �= 0, ∀θ̃. (28)

which implies that the origin of the closed loop
system is globally strongly stable by directly
applying Theorem 1 in (Bacciotti and Ceragi-
oli, 1999). In order to show the attractiveness of
x(t), consider a trajectory (x(t), θ̂(t)) ∈ Ξ. From
(28), it follows that

sup
(x,θ̃)∈Ξ

V (x(t), θ̃(t)) ≤ V (x0, θ̃0) ≤ M, ∀t ≥ 0

(29)
where M is a sufficiently large positive constant.
Thus, Ξ is uniformly bounded. Moreover, ẋ(t)
is also essentially uniformly bounded since ẋ ∈
K[f + gα0 + gφθ − gφθ̂](x, θ̃), and f , g, α0,
φ+ and φ− are continuous functions. Thus, Ξ is
equicontinuous. From (28) and (29),∫ ∞

0

W (x(t))dt ≤ M. (30)

Since W (x) is continuously differentiable posi-
tive definite function, W (x(t)) is uniformly con-
tinuous. Hence, Barbalat’s lemma follows that
W (x(t)) converges to 0 as t → ∞ which yields
that x(t) converges to 0.

Remark 3.1. In Theorem 3.1, the convergence of
x(t) to 0 is shown. But, the uniqueness of the so-
lution of the closed loop system is not guaranteed.
The following example shows a non-uniqueness of
the solution.

Example 3.1. Consider a second order mechanical
system with Coulomb friction

ẋ = Ax + b(u − θsgn(x2)
)

(31)

where x = [x1 x2]T , θ > 0 is an unknown
parameter, and

A =
[

0 1
−a0 −a1

]
, b =

[
0
1

]
, a0 > 0, a1 > 0.

(32)
Then, from (17) the adaptive control law is given
by

u = kx − θ̂sgn(x2)
˙̂
θ = γxT Pb sgn(x2)

(33)
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Fig. 1. Simulation result : perturbation δ = 10−5

setting : θ = 2, −a0+k1 = −2, −a1+k2 = −3
initial condition : x1(0) = 1, x2(0) = 0 ± δ,
θ̂(0) = −8



where k = [k1 k2] is an adequate state feedback
gain, and P is a positive definite solution of
Lyapunov equation satisfying

P (A + bk) + (A + bk)T P = −Q, Q = QT > 0.
(34)

Thus, the closed loop system is given by[
ẋ
˙̃
θ

]
=F (x, θ̃)=

[
Asx−bθ sgn(x2)−bθ̂sgn(x2)

γxT Pb sgn(x2)

]
(35)

where As = A + bk, and θ̃ = −θ − θ̂. Since the
discontinuous surface is Ω =

{
(x, θ̃) ∈ R

3 | S(x) =
x2 = 0

}
, the state vector space R

3 is divided into
the domains

Ω+ = {(x, θ̃) ∈ R
3| S(x) > 0}

Ω− = {(x, θ̃) ∈ R
3| S(x) < 0}. (36)

Thus, by utilizing Theorem 14 in (Filippov, 1964),
we can show that the uniqueness and continuous
dependence of the solution starting from an initial
condition satisfying θ̂(0) < 0 and |θ̂(0)| > θ +
|(−a0 + k1)x1(0)| can not be assured.

Fig.1 shows two trajectories starting from some
points on the neighborhood of Ω. The trajecto-
ries starting from x2(0) = 0 ± δ, where δ > 0
is a perturbation, indicate two critically differ-
ent behaviors, which implies that the uniqueness
and continuous dependence of the solution of the
closed loop system fail.

4. SIMULATION

Consider the stabilization problem of hybrid sys-
tem (4) in Example 2.1 again. Now assume that
system matrices A1 and A2 are unknown.

Since system (4) can be represented into system
(6), from Theorem 3.1 the adaptive control law is
given by

u = Kx − φ(x)θ̂
˙̂
θ = γ

(
xT Pφ(x)

)T (37)

where

K =
[

0 1
−2 −3

]
, (38)

and P is a positive definite solution of Lyapunov
equation satisfying

PK + KT P = −Q, Q = QT > 0. (39)

As shown in Fig.2, the closed loop system is
globally strongly stable, and x(t) converges to 0
as t tends to ∞. Notice that θ̂ does not necessarily
converge to the nominal values.

5. CONCLUSIONS

We have presented an adaptive controller de-
sign for nonsmooth systems with uncertainty. The
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5)

characteristics of the adaptive control system is
also investigated. It is shown that the closed loop
system is globally strongly stable and the state
of the controlled system converges to 0 although
the uniqueness of the solution is not necessar-
ily guaranteed. We also give an example of non-
uniqueness of the solution of the proposed adap-
tive system. As an application, our controller is
successfully applied to a hybrid system with un-
known parameters.
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Appendix A

Consider the vector differential equation

ẋ = f(x, t), x(t0) = x0 (A.1)

where x ∈ R
n and f : R

n × R → R
n satisfies the

following condition.
Condition B: f is defined almost everywhere and is
measurable in an open region D ⊂ Rn+1. Further,
for every compact set Q ⊂ D, there exists an
integrable B(t) such that ‖f(x, t)‖ ≤ B(t) a.e.
in Q.

Definition A.1. (Filippov solution (Filippov, 1964)).
A vector function x(t) is called a solution of (A.1)
on [t0, t1] if x(t) is absolutely continuous on [t0, t1],
and for almost all t ∈ [t0, t1]

ẋ ∈ K[f ](x, t) (A.2)

where K[·] is the Filippov set defined by

K[f ](x, t) =
⋂
δ>0

⋂
µN=0

cof(B(x, δ) − N, t). (A.3)

⋂
µN=0 denotes the intersection over all sets N of

Lebesgue measure zero, B(x, δ) = {y ∈ Rn| ‖y −
x‖ < δ} and co denotes the convex closure. �

Theorem A.1. (Chain rule (Shevitz and Parden, 1994)).
Let x(t) be a Filippov solution of (A.1) on an
interval containing t and V : Rn → R be a Lip-
schitz and regular function (See (F.Clarke, 1983)
for definition).
Then, V (x(t)) is absolutely continuous, (d/dt)V (x(t))
exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃V (x) (A.4)

where
˙̃V (x) =

⋂
ξ∈∂V (x(t))

ξT K[f ](x(t)). (A.5)


