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Abstract: In this paper a simple approach is proposed for decentralized control of linear 
large-scale systems. Sufficient conditions for diagonal dominance of closed-loop large-
scale systems are derived. Based on these conditions, the interactions between the 
subsystems can be considered as external disturbances for each isolated subsystem. Then a 
previously proposed approach is used to attenuate disturbances via dynamic output 
compensators based on complete parametric eigenstructure assignment. Through 
attenuation of the disturbances, the closed-loop poles of the overall system are assigned to 
the desirable region, by assigning the eigenstructure of each isolated subsystem 
appropriately. An example is given to show the effectiveness of the proposed method. 
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1. INTRODUCTION 
 
Decentralised control with Nyquist-like methods can 
be very effective, if one can obtain the required 
degree of diagonal dominance fairly easily (Nwokah, 
et al., 1993). In (Labibi, et al., 2003), it is shown that 
in order to achieve the proper conditions for overall 
closed-loop diagonal dominance, the interactions 
between the subsystems are taken as external 
disturbances for each isolated subsystem. Then it is 
tried to attenuate the effect of the disturbances by 
solving properly defined local ∞H  problems. In this 
paper, the interactions between the subsystems are 
taken as external disturbances for each isolated 
subsystem like the proposed method in (Labibi, et al., 
2003). But, in order to attenuate the disturbances, the 
method proposed in (Duan, et al., 2000) is used. The 
proposed methodology can be applied to non-square, 
non-minimum phase and open-loop unstable systems, 

which will thereby guarantee a closed-loop 
diagonally dominant system and this is achieved by 
using a decentralized controller.  
 
This paper is organized as follows: In section 2, the 
problem of finding suitable decentralized controllers 
for the subsystems of a linear large-scale system is 
presented. In section 3, the eignstructure assignment 
methodology proposed in (Duan, et al., 2000). is 
examined. In section 4 the new method for 
decentralized control of large scale systems is 
proposed, and it is shown that by assigning the 
closed-loop eigenstructure of each isolated subsystem 
appropriately, the interactions between the 
subsystems are attenuated, while the closed loop 
poles of the system are tried to be assigned to the 
desirable region, through proper assignment of 
eigenstructiure of the isolated subsystems. In section 



5 an example is given to show the effectiveness of 
the proposed method.  

 
 

2. PROBLEM FORMULATION 
 
Consider a large-scale system ),(sG  with the 
following state-space equations  
 

)()(
)()()(

tCxty
tButAxtx

=
+=&

   (1) 

where ,nRx∈ ,mRu∈ ,lRy∈ ,nnRA ×∈ mnRB ×∈ , and 
nlRC ×∈ , composed of N  linear time-invariant 

subsystems )(sGi , described by 
 

iiii

N

ij
j

jijiiiiiii

xCy

xAuBxAx

=

++= ∑
≠
=1

&

   (2) 

 
where 

,in
i Rx ∈ ,im

i Ru ∈ ,il
i Ry ∈ ,ii nn

ii RA ×∈ ii mn
ii RB ×∈ , 

ii nl
ii RC ×∈ , nn

N

i
i =∑

=1
, mm

N

i
i =∑

=1
,  and ll

N

i
i =∑

=1
.  

 
It is assumed that all ),( iiii BA  and ),( iiii CA  are 
controllable and  are observable respectively and all 

of iiB ’s and iiC ’s are full rank. The term ∑
≠
=
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associated to the interactions of the other subsystems.  
 
The objective of this paper is to design a local output 
feedback dynamic controller 
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for each isolated subsystem 
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where iR  is the i-th reference input vector, such that 
the eigenstructure of the subsystem is assigned 
appropriately. Therefore, the decentralised controller  
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assigns the overall closed loop poles in the desirable 
region, if some sufficient conditions are satisfied. 
 
 
 
 

3. EIGENSTRUCTURE ASSIGNMENT 
 

In this section the method for eigenstructure 
assignment proposed in (Duan, et al., 2000) is 
investigated.  
 
Consider the isolated i-th subsystem given by 
equations (4). Let ),( iiii BA  be controllable and 

),( iiii CA  observable and the matrices iiB  and iiC  
are full rank. A general output dynamic compensator, 
of order ip , for the subsystem can be written in the 
following form 
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where ip

i Rz ∈  is the compensator state vector and 
2,1,, =ljKijl  are four controller coefficient matrices 

of appropriate dimensions. Applying the dynamic 
compensator to the i-th subsystem, gives following 
closed-loop system 
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Since, eigenvalues of a non-defective matrix are less 
sensitive to parameter perturbations in the matrix, the 
closed loop system matrix, ciA  is assumed to be non-
defective, where its Jordan form is a diagonal matrix.  
 
Subsystem (4) is controllable and observable and the 
matrices iiB  and iiC  are full rank, therefore there 
hold the following right co-prime factorisations  
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where ii mn
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i RsH ×∈)(  
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)(sNi  and )(sDi , )(sH i  and )(sLi  are both right co-
prime.  
 
Lemma 3.1 (see (Duan, et al., 2000) for proof). For 
the i-th isolated subsystem, let ),( iiii BA  be 
controllable and ),( iiii CA  be observable, and 



iiij pnjs += ,...,1,  be a group of self-conjugate 
complex numbers, then it follows that: 
a) matrices 2,1,. =ljKijl , iT , and )()( iiii pnpn

i RV +×+∈  
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hold for a set of self conjugate complex numbers 
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where jlδ  is the Kronecker function.  
b) when constraints C1 and C2 are met, the matrix iV  
is given by 
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and the matrix iT  is given by  
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the corresponding matrices ijlK  are either given by 
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The parameters ijlf  and ijlg  ii pnlj +== ,...,2,1;1,0  
represent the degrees of freedom available in the 
compensator design for the i-th isolated subsystem. 
 
 

4. DECENTRALISED CONTROL VIA 
DISTURBANCE ATTENUATION  

 
Consider the i-th subsystem given by equations (4). 
In general the controller designed for each isolated 
subsystem is a dynamic controller. Assuming the i-th 
controller )s(Ki  has the state-space equations given 
by (6). It is simple to show that designing dynamic 
output feedback controller for the subsystem can be 
reduced to designing a static controller for the 
augmented subsystem with the state space equations 
given by (7). 
 
Applying the designed controller to the i-th system, 
the closed-loop subsystem has the following equation 
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From equation (17), it is clear if 
N,...,iCHPC ciiiici 1=< α , where 1<iα  is a 

positive scalar, then 
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This means that [ ]0000 LL ciC  is an 
approximation to [ ] iicici HPCC −0000 LL . 
The residual of [ ]0000 LL ciC  is the matrix 
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Therefore by having small values for N,...,ii 1=α  , 
the overall closed loop system is diagonal dominant.  
 
Considering equations (18), it can be seen that 
minimizing the term iici HPC , minimizes the 
interactions between the subsystems. It means, the 
states of the other subsystems may be considered as 
external disturbance for each isolated subsystem. 
Thus, to attenuate the effects of other subsystems on 
the i-th output, the following index can be 
minimized. 
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Since the i-th isolated subsystem is stabilized, the 
following Lyapunov matrix equation  
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has a unique solution with respect to iP , and that this 
solution is also symmetric semi-positive definite. 
Further, it follows that the following equation holds: 
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(Duan, et al. 2000). Using equations (10)-(11), and 
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Considering the structure of ciC  , equation (20) can 
be expressed as  
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An algorithm example to solve a decentralized 
control problem is given below: 

 
4.1 Algorithm: 
 
(a) Select 0=ip  degree of controller for the i-th 
subsystem. 
b) For the i-th subsystem, solve for the polynomial 
matrices )s(Ni , )s(H i , )s(Di , )s(Li , satisfying the 
right co-prime factorisation equations (8) and (9).  
(c) Solve for the expression of constraint C1, C2 and 
the parametric expression for matrix 0iV  according to 
the equations (13).    
(d) Solve for the expression of index iJ  according to 
the equations (28), and (30) . 
(e) Specify the desired closed-loop eigenvalue 
location regions, according to the closed-loop 
stability and performance requirements. 
(f) Solve the optimization problem  

iJmin  
s.t constraints C1, C2, hold and iiij pn,...,js += 1   
belong to the desired region in left of the complex 
plane. 



with some numerical optimization algorithm. If  iα  
is small enough, go to step g), otherwise 1+= ii pp  
and go to step d). 
(g) Solve ijlK  according to equations (15) or (16). 
 
Remark - In realistic large-scale systems, the 
interactions of the subsystems are usually not known.  
In this case, conditions and cost functions can 
satisfactorily be modified as  
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where je  is the j-th column of the identity matrix 
with appropriate dimensions. 
 
 

5. An EXAMPLE 
 

Consider a system whose dynamics are described by: 
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(Veillette, et al. 1992). The system is unstable and 
highly interacted. Assuming the desirable dynamic 
characteristic is a minimum decay rate 1−=α . The 
system is consisted of two isolated subsystems  
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defined cost functions for the isolated subsystems, 

0047.01 =J , 0469.02 =J  are achieved. Hence, 21,α  
are small enough and the overall closed loop system 
is diagonal dominant. The designed decentralized 
controller has the following state space matrices. 
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This controller assigns the closed loop poles of the 
overall system at  
 

4.4808j} - ,-18.9096 4.4808j + 18.9096-
  4.3276,-  3.8882,- , 1.6025j - 1.0083- , 1.6025j + -1.0083{e =

 
which are close to eigenvalues of the isolated 
subsystems  given by  
 

4.2748},- 17.6827,- 19.1298,- {1e =

1.3726}- 1.9846,- 3.6072,-  {2e = .  
 
 

6. CONCLUSION 
 
This paper introduces a new approach for designing a 
decentralised controller for large-scale systems. 
Sufficient conditions for diagonal dominance of 
overall closed loop system are derived. Based on 
these conditions, the interactions between the 
subsystems can be considered as external 
disturbances for each isolated subsystem. Then the 
proposed approach in (Duan, et al., 2000 ) is used for 
disturbance attenuation via dynamic output 
compensators based on complete parametric 
eigenstructure assignment. By attenuating the 
disturbances, the closed loop poles are assigned to 
the desirable region by assigning the eigenstructure 
of isolated subsystems appropriately. 
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