
EVALUATION OF HYBRID BAYESIAN NETWORKS
USING ANALYTICAL DENSITY REPRESENTATIONS

Oliver C. Schrempf ∗,1 Uwe D. Hanebeck∗
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Abstract: In this article, a new mechanism is described for modeling and evaluating
Hybrid Dynamic Bayesian networks. The approach uses Gaussian mixtures and Dirac
mixtures as messages to calculate marginal densities. As these densities are approximated
by means of Gaussian mixtures, any desired precision is possible.
The presented approach removes the restrictions of sample based evaluation of Bayesian
networks since it uses an analytical approximation scheme for probability densities which
systematically minimizes the distance between the exact and the approximate density.
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1. INTRODUCTION

The application of Bayesian networks is evolving
since their first appearance in (Pearl, 1988). Their
stochastic foundation provides a method for building
models for systems with an uncertain behavior. Such
a model is usually found by identifying parts of the
system which can be represented by random variables.
Joint probabilities over these random variables are
then used to represent the system’s behavior.
The termrandom variableis usually used for scalar
values only. For the sake of simplicity this paper only
deals with scalar values, but it is easy to extend the
presented approach to vector valued systems.

Bayesian networks are considered to be an efficient
representation of joint probabilities, exploiting the
causal background of a domain. This is achieved by
representing the causal structure of a domain by means
of a directed acyclic graph (DAG). Each random vari-
able is depicted by a node in this graph and every
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edge stands for a direct dependency between two vari-
ables. Probabilistically, this dependency is expressed
by means of a likelihood function. Bayesian networks
have the big advantage, that not all possible combina-
tions of variables and their states have to be addressed
to represent the joint probability. It is sufficient to con-
sider the conditional densities of the variables given
their parents in the graph.

The first Bayesian networks were limited to discrete
domains and their conditional densities were modeled
by conditional tables. Pearl’s approach to evaluate the
network by means of message passing (Pearl, 1988)
was extended for continuous networks in (Driver and
Morrell, 1995). They used Gaussian mixtures, which
are sums of weighted Gaussian densities, to approx-
imate the likelihood functions and to represent the
messages.

The treatment of hybrid Bayesian networks today is
mainly influenced by the articles (Lauritzen, 1992;
Lauritzen and Wermuth, 1989; Olesen, 1993), which
use so called cg-potentials. The drawback of this
approach is the mere use of the first two moments



(mean and variance) to characterize continuous densi-
ties. Another problem is the explicit avoidance of dis-
crete nodes as children of continuous parents. There
have been attempts to remove this restriction by using
sigmoid-functions (Murphy, 1999). This approach was
picked up to include it into Lauritzen’s mechanism
(Lerneret al., 2001), but again, accuracy is limited to
the first two moments of the densities.

Dynamic Bayesian networks are an extention to model
the evolution of a static Bayesian Network over time.
This is done by representing the network at several
time slices and connecting the network of time step
t with the network in step t+1 via edges pointing from
t to t+1.

A rarely considered problem in the context of Bayesian
networks is the treatment of nonlinear dependencies
between variables. The possibility of approximating
the likelihood functions induced by nonlinear depen-
dencies using Gaussian mixtures is offered in (Driver
and Morrell, 1995).

A problem in dynamic as well as in large static net-
works is the increasing complexity of continuous den-
sities, while they are propagated through the network.
Sampling methods like particle filters (Murphy, 2002)
are often used to overcome this problem. The draw-
back of these methods is that it is not known a priori
how many samples are needed to approximate the
densities and no distance between the true and the
approximated density can be given. This paper uses
a progressive approach (Hanebecket al., 2003) for
approximating the densities by means of Gaussian
mixtures. This has the advantage that accuracy (dis-
tance between densities and its approximations) can
be traded for complexity (number of mixture compo-
nents) and vice versa.

The remainder of this paper is structured as follows.
The next section gives a formulation of the consid-
ered problem. Section 3 presents new formulations for
hybrid conditional density functions. In section 4 ac-
cordingly adapted message representations are shown.
The progressive approximation scheme is treated in
section 5.

2. PROBLEM FORMULATION

The application of hybrid Bayesian networks requires
the simultaneous treatment of continuous and discrete
random variables. Hence, a compatible representation
for densities in both cases has to be found. This
work is concerned with the representation of density
functions in hybrid systems and the corresponding
hybrid conditional densities used in the likelihood
functions. Furthermore, the propagation of densities
through the hybrid network will be treated.

Recent works concerning hybrid Bayesian networks
use only the first two moments to describe continuous
densities. Unfortunately, taking into account only the
first two moments yields a drawback, since there exist
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many densities which have identical first moments.
This can be seen in figure 1 for the functionsf1(x) =
N(x, 0, 1) and f2(x) = 1
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is a Gaussian density with meanµ and standard de-
viation σ. Both densities,f1, andf2 have 0 as first
and 1 as second moment independent ofa ∈ [0, 1).
Obviously, these densities cannot be distinguished by
their first two moments. Hence, this work uses a full
density representation provided by Gaussian mixtures.

The simultaneous treatment of continuous and discrete
variables used in this paper considers two distinct
cases, which are shown in figure 2. The nodes in box
shape are discrete whereas the continuous nodes have
a round outline. For the parent nodesu1, . . . ,um and
the child nodesy1, . . . ,ym we assume a partition into
continuous (u1, . . . ,un or y1, . . . ,yn) and discrete
(un+1, . . . ,um or yn+1, . . . ,ym) variables.

Creating hybrid Bayesian Networks requires hybrid
conditional densities to capture the relationship be-
tween continuous and discrete variables. These densi-
ties describe the probability of a continuous or discrete
random variable, depending on the state of a set of
mixed parent variables.

Since this new approach is based on message pass-
ing, the message schemes known from purely discrete
(Pearl, 1988) or purely continuous (Driver and Mor-
rell, 1995) approaches must be extended for the use in
hybrid networks. This is due to the fact that messages
from continuous variables travel directly to discrete
successors and vice versa. Hence, a new representa-
tion is needed, allowing the simultaneous treatment of
continuous and discrete densities.

Updating the marginal densities in the network re-
quires the multiplication of incoming message den-
sities. Hence, the exact calculation leads to increas-
ingly complex densities. For Gaussian mixtures this
means that the number of components grows. To keep
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Fig. 2. The simultaneous treatment of continuous and discrete variables requires the consideration of two distinct
cases. The nodes in box shape are discrete, whereas the continuous nodes have a round outline. Hence, the
left part of this figure shows the continuous and the right part shows the discrete case.

the complexity at a tractable level, the densities are
systematically approximated by means of Gaussian
mixtures with less components but with respect to a
distance measure. This is done by application of the
progressive Bayes framework (Hanebecket al., 2003).
A more precise introduction to this approach is given
in section 5.

3. HYBRID CONDITIONAL DENSITIES

A hybrid conditional densityf(x|u1, . . . , um) is given
as defined in (Schrempf and Hanebeck, 2004) by

f(x|u1, . . . , um) =
|un+1|∑
kn+1=1

...

|um|∑
km=1

(
m∏

i=n+1

δ(ui − ki)

)
f∗(x|u1, ..., un).

This formulation contains a single continuous con-
ditional densityf∗(x|u1, . . . , un) for each joint dis-
crete state(un+1, . . . , um) of x’s discrete predeces-
sors. The asterisk is an abbreviation indicating the
dependency on(kn+1, . . . , km). The number of states
of a discrete variableui is indicated by|ui|. δ() is a
Dirac delta function, which is used here to select the
appropriatef∗() for each joint discrete state.

The conditional densitiesf∗(x|u1, . . . , un) used in
this paper are modeled by means of Gaussian mixtures
in the continuous case and as sum over Gaussians and
Dirac pulses in the case thatx is discrete. This means
we have a single Gaussian for each continuous parent
variable and another Gaussian or sum of weighted
Dirac pulses depending ifx is continuous or discrete.
This is

f∗c (x|u1, . . . , un) =
M∗∑
j=1

α∗jN(x, µ∗x,j , σ
∗
j )·

N(u1, µ
∗
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∗
u1,j) · . . . ·N(un, µ

∗
un,j , σ

∗
un,j)

in the continuous and

f∗d (x|u1, . . . , un) =
M∗∑
j=1

α∗j

 |x|∑
lj=1

p∗ljδ(x− lj)

 ·

N(u1, µ
∗
u1,j , σ

∗
u1,j) · . . . ·N(un, µ

∗
un,j , σ

∗
un,j)

in the discrete case.

4. MESSAGES IN A HYBRID NETWORK

Measurements for variables in the network provide
information for other (unobserved) variables. This in-
formation travels to an arbitrary nodex in the network
by means of message densitiesπx(ui) from the parent
nodes andλyj (x) from the child nodes. Continuous
parents send their messages as Gaussian mixture den-
sities

πxc(ui) =
Mi∑

li=1

w
(i)
li
N(ui;µ

(i)
li,π

, σ
(i)
li,π

) ,

whereas discrete parents send a sum of weighted Dirac
pulses

πxd(ui) =
|ui|∑
li=1

p
(i)
li
δ(ui − li) .

The message from a continuous childyi is again a
Gaussian mixture

λyic(x) =
Mi∑

li=1

w
(i)
li
N(x;µ(i)

li,λ
, σ

(i)
li,λ

) .

In the case that there was no measurement foryi or in
the part of the network below this node, the message
is set to

λyic(x) = 1 .

The message from a discrete child is a sum of
weighted Dirac pulses

λyid(x) =
|x|∑

li=1

p
(i)
li
δ(x− li)

If there is no measurement available from this part of
the network, the message ofyi is set to 1, causing no
update forx.
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Fig. 3. The probability density overx is updated according to the information coming from the network above
and belowx.

4.1 Density Update

Depending on the measured values for observable
variables in the network, the probability density over
the unobserved variables has to be updated. The prob-
ability density over an arbitrary nodex for instance,
is updated according to the measurements made in the
upper part of the network and the measurements made
in the part of the network belowx. This is shown in
figure 3.

The density over an arbitrary variablex in the network
depending on the the measured values is calculated as

f(x) = αf(x|û1, . . . , ûm)f(ŷ1, . . . , ŷm|x)
= απ(x)λ(x) , (1)

whereα is a normalization constant.π(x) andλ(x)
are introduced as abbreviations.

The information from the upper part of the net can be
written as

π(x) =

∞∫
−∞

· · ·
∞∫

−∞

f(x|u1, . . . , um) ·

m∏
j=1

πx(uj) du1 · · ·dum .

This calculates the marginal density overx given the
message provided by every predecessor, weighted by
the likelihood ofx.

Inserting the definitions from above and simplifying
the formula yields

π(x) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

(
m∏

i=n+1

Pr(ui = ki)

)

·
∞∫

−∞

· · ·
∞∫

−∞

f∗(x|u1, . . . , un) ·

n∏
j=1

πxc(uj) du1 · · ·dun . (2)

Pr(ui = ki) is the probability, that variableui is in
stateki. (2) is equal for both continuous and discrete
variablesx. To make the distinction between continu-

ous or discretex, f∗(x|u1, . . . , un) has to be chosen
accordingly.

Hence, for a continuousx we receive the message

πc(x) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

M∗∑
t=1

γ∗tN(x;µ∗x,t, σ
∗
t ) ,

which is a Gaussian mixture density with the weights

γ∗t = α∗t

(
m∏

i=n+1

Pr(ui = ki)

)
·

n∏
j=1

Mj∑
lj=1

w
(j)
lj
Nuj

(
µ∗t ;µ

(j)
lj ,π, σ

∗
t + σ

(j)
lj ,π

)
.(3)

The termNuj
(µ∗t ;µ

(j)
lj ,π, σ

∗
t +σ(j)

lj ,π) describes a Gaus-

sian density overuj with meanµ(j)
lj ,π and variance

σ∗t + σ
(j)
lj ,π evaluated atµ∗t .

In the case thatx is discrete, the message from the
upper part of the net is

πd(x) =
|un+1|∑
kn+1=1

· · ·
|um|∑
km=1

M∗∑
t=1

γ∗t

 |x|∑
ht=1

p∗ht
δ(x− ht)


with the same weightsγ∗t as in (3). This message is a
sum of weighted Dirac pulses.

The message from the lower part of the net is written
as

λ(x) =
m∏

j=1

λyj (x) ,

which is a product of the single messages coming from
every child node ofx. In the case thatx is continuous,
this is again a mixture of Gaussians according to

λc(x) =
M0∑

l0=1

w′
l0N(x;µl0,λ, σl0,λ)

with w′
l0

=
∏m

j=1 w
(j)
lj

. In the discrete case we have a
product over sums of weighted Dirac pulses

λd(x) =
m∏

j=1

|x|∑
lj=1

p
(j)
lj
δ(x− lj) .
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Fig. 4. Messages flow intoy to update its density.
Theny sends back messages to the network.

The density function for a continuous or discretex can
now be obtained by multiplying the appropriateπ- and
λ-messages.

4.2 Calculating the Messages to be sent by an Updated
Node

Every node receiving messages from its neighbor
sends out messages to the other neighbors as well.
It sendsπ-messages to its children andλ-messages
to its parents as depicted in figure 4. These messages
are calculated according to (Schrempf and Hanebeck,
2004) and result in Gaussian mixtures for continuous
and Dirac mixtures for discrete variables.

Theπ-Messages

The messageπyi(x) that a nodex sends to its i-th
successor is calculated as

πyi(x) = f(x|û1, . . . , ûm, ŷ1, . . . , ŷi−1, ŷi+1, . . . , ŷm)

= απ(x)λ(x)|λyi(x)=1 .

This means that all messages excluding the one com-
ing from yi are passed ahead. Hence, this message
can be calculated as shown in section 4.1 under the
assumptionλyi(x) = 1.

Theλ-Messages

The calculation of theλ-messages is a little more
tricky since these messages travel against the direc-
tion of the modeled dependencyf(x|ui). Depending
on the continuous or discrete identity of the parent
variable, the message sent byx is a Gaussian mixture
density or a sum of weighted Dirac pulses as shown
in table 1. The main information of these messages is

Table 1. Theλ-messages fromx to its
parent differs for continuous or discreteui.

ui λx(ui)

cont.
|un+1|∑
ln+1=1

· · ·
|um|∑
lm=1

M∗∑
j=1

ψ∗
j,iN(ui, µ

∗
ui,j , σ

∗
j )

disc.
|ui|∑
li=1

δ(ui − li) · ηi
li

carried by their weight vectorsψ∗j,i andηi
li

which are
calculated in different ways for continuous or discrete
x.

4.3 Boundary Conditions

If x is a root node for which no measurement is
available, itsπ-message is set to be the prior density
for that node. This is a Gaussian mixture density for a
continuousx and a sum of weighted Dirac pulses for
a discretex.

If x is a leaf node that has not been observed so far, its
λ-message is set to 1. Hence the density for this node
is calculated asf(x) = π(x).

Exact measurementsx = x̂ are represented byλ(x) =
δ(x− x̂) = N(x, x̂, 0). This impliesf(x) = x̂.

5. PROGRESSIVE APPROXIMATION

To tackle the problem of the increasing number of
mixture components described in section 2 we re-
approximate the mixtures resulting from the product
of mixtures. The approach described in (Hanebecket
al., 2003) provides a framework for approximating
arbitrary densities by means of a Gaussian mixture
density. It estimates an optimal set of parametersη
consisting of mixture weightsw, meansµ and vari-
ancesσ for all components in the mixture

η =
[
w(1), µ(1), σ(1), · · · w(L), µ(L), σ(L)

]T
.

This vector of parameters is approximated optimally
in the sense of minimizing a distance measure be-
tween the exact and the approximate density. In our
case, the exact density is a product of two Gaussian
mixtures. To achieve this, instead of approximating
the exact density directly, the approach starts with a
tractable density that can be approximate with no er-
ror. This density is continuously transformed into the
exact density via intermediate densities. To realize this
progression, a parameterγ is introduced into the exact
density which varies from 0 to 1. Whileγ approaches
1, the parameter vectorη is adjusted infinitesimally,
to keep the distance between the parameterized and
the approximated density at the minimum. Since the
approach starts at the global minimum, it is guaranteed
that the global minimum is reached forγ = 1.

As a measure of deviation between the true density
and its approximation, we use the squared integral
distance

G(η, γ) =
1
2

∫
IR

(
f̃(x, γ)− f(x,η)

)2

dx ,

where f̃(x, γ) is the parameterized true density and
f(x,η) is the approximation density.

For γ = 0, the parameterized density can easily be
approximated by a Gaussian mixture or is already
given as Gaussian mixture. Since for this work the
product of two arbitrary Gaussian mixture densities
f1(x) andf2(x) has to be approximated by means of
a Gaussian mixture, we choose the parameterization
f̃(x, γ) = f1(x) · f2(x, γ) with

f2(x, γ) =
L∑

i=1

wi exp

(
1
2

(x− µi)2
1+ε
γ+εσi

)
,



whereε is a small constant. Hence, forγ = 0, f2(x)
is close to 1 for allx and f̃(x, γ) = f1(x). For
γ = 1, the desired functioñf(x, γ) = f1(x) · f2(x) is
approached.

To obtain a progression fromγ = 0 to γ = 1 while
keeping the distance at the minimum we first take the
partial derivative of the distance measureG(η, γ) with
respect to the parameter vectorη and setting the result
to zero

∂G

∂η

!= 0 .

The partial derivative with respect to the progression
parameterγ yields a system of explicit ordinary first-
order differential equations

b(η, γ) = P(η)η̇

with coefficients given by

b(η, γ) =
∫

IR

∂f̃(x, γ)
∂γ

∂f(x,η)
∂η

dx

and

P(η) =
∫

IR

(
∂f(x,η)
∂η

)(
∂f(x,η)
∂η

)T

dx .

This system of explicit ordinary first-order differential
equations can be solved on the interval0 . . . 1 by any
appropriate solver, e.g. Euler or Runge-Kutta.

The framework further provides a method for struc-
tural adaptation by means of splitting and removing
mixture components, which we omit here for the sake
of brevity.

6. CONCLUSIONS

This paper presented a new approach for modeling and
evaluating hybrid Bayesian networks, that allows ar-
bitrary combinations of continuous and discrete vari-
ables while making no restrictions on their ancestry.
This is achieved by a unified notation for the corre-
sponding likelihood functions. Even nonlinear depen-
dencies between variables can be modeled by follow-
ing this approach.

Due to the application of full densities as messages
instead of only their first two moments, the proposed
approach gains accuracy. The application of full den-
sities is essential since it is not possible to reconstruct
an arbitrary density solely from its first two moments.
Furthermore, a drawback of sample based approaches
is overcome. We can give the distance between the
exact and the approximate density according to a mea-
sure of deviation.

Since the exact evaluation of such networks is com-
putationally not tractable, the proposed approximation
scheme offers a good tradeoff between accuracy and
complexity.

One drawback of the proposed approach is the limita-
tion to singly connected graphs. One possible way to
overcome this is to find a method to do clustering in

the graph. Lauritzen uses clustering techniques when
building junction trees, but this results in collapsing
the densities to the first two moments. To preserve the
accuracy of the approach presented here, the persis-
tence of the full density structures must be guaranteed.

The presented approach has already been used in the
context of intention recognition in the robotics domain
and showed good results. Especially the freedom in
modeling is of great value.
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