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Keywords: Errors-in-variables, system identification, continuous-time models, linear
estimation

1. INTRODUCTION

Consider a single-input, single-output, linear,
time-invariant, continuous-time system having
noise-free input u0(t) and output y0(t) linked by:

n∑

j=0

ajy
(j)
0 (t) =

m∑

j=0

bju
(j)
0 (t) (1)

where x(j)(t) := djx(t)
dtj . The system is assumed to

be proper, i.e. m ≤ n. Without any loss of general-
ity we assume a0 = 1. It is assumed that the input
and output signals are sampled at time-instants
{tk}

N
k=1, not necessarily uniformly spaced. The

sampled signals are denoted by {u0(tk); y0(tk)}.
It is further assumed that the measurements
are noise corrupted. The observed sampled data
{u(tk)}N

k=1 and {y(tk)}N
k=1 are given by

u(tk) = u0(tk) + ũ(tk), y(tk) = y0(tk) + ỹ(tk),

1 This work was supported by the Australian Research
Council.

where {ũ(tk)}N
k=1 and {ỹ(tk)}N

k=1 are zero mean
white noise sequences with variances σu and σy,
respectively. In this paper we are concerned with
the problem of identifying the continuous-time
parameters {aj}

n
j=1 and {bj}

m
j=0 from the noise

corrupted observations of the input-output sam-
pled data {u(tk)}N

k=1 and {y(tk)}N
k=1.

The model under consideration is often referred
to as the continuous-time errors-in-variables
(EIV) model. Many methods have been proposed
to solve the related problem in discrete-time.
The popular approaches can be classified in a
few broad categories (Söderström et al., 2002);
namely, the bias compensating least squares meth-
ods (Beghelli et al., 1990; Zheng, 1998), pre-
diction error and maximum likelihood meth-
ods (Söderström, 1981), instrumental variable
based approaches (Stoica et al., 1995; Söderström
and Mahata, 2002) and frequency-domain meth-
ods based on non-parametric noise modeling
(Schoukens et al., 1997). Unless we impose certain



assumptions on the signal and noise models, it
is well-known that the general EIV model is not
uniquely identifiable from second order statistics
(Anderson and Deistler, 1984). This motivates
the approaches based on higher order statistics
(Tugnait and Ye, 1995).

To our best knowledge, the case of continuous-
time EIV model identification has not received ap-
propriate attention so far. A first attempt to solve
the EIV filtering problem for continuous-time
models has been recently proposed in (Markovski
et al., 2002). An alternative approach for transfer
function model is derived in this paper. The tra-
ditional state-variable filter (SVF) method is used
to handle the time-derivative measurement prob-
lem (see for example (Garnier and Young, 2004)
and the references therein). In this work, we first
analyze the effect of additive noise on the SVF
outputs. As a next step we use this novel char-
acterization to develop a consistent estimator for
the continuous-time EIV identification problem
introduced above.

2. CONTINUOUS-TIME MODEL
IDENTIFICATION

In this section we present a brief review of direct
least squares-based identification of continuous-
time models (Garnier et al., 2003; Garnier and
Young, 2004). It is well-known that in presence
of additive noise in either or both of the in-
put and output measurements, the conventional
least squares method gives biased estimates. If
the input data are noise-free, one can however
obtain consistent estimates by using an instru-
mental variable estimator even if the output mea-
surements are noise corrupted. Unfortunately, in
presence of additive noise in the input measure-
ments the instrumental variable based methods
fail to achieve parameter consistency. Since the
algorithm proposed in this paper is based on least
squares normal equations, it is more appropriate
to introduce the least squares estimation method.

A crucial step in direct continuous-time model
identification is the appropriate reconstruction of
the time-derivatives from the sampled data. It is
well-known that the computation of derivatives
from sampled data is an ill posed problem. The
traditional SVF approach mitigates this problem
by passing both input/output signals through an
all-pole filter of minimum order n. To explain the
idea, consider that both the noise-free input and
output data are prefiltered as follows:

n∑

i=0

fiy
(i)
f (t) = y0(t),

n∑

i=0

fiu
(i)
f (t) = u0(t). (2)

Without any loss of generality we shall assume
f0 = 1. Then it is readily verified that the filtered

signals yf (t) and uf (t) satisfy the differential
equation

n∑

i=0

aiy
(i)
f (t) =

m∑

i=0

biu
(i)
f (t).

The equation above can be written alternatively
as

y′

0(t)a = u′

0(t)b, (3)

where we have introduced regressors

y′

0(t) = [ y
(n)
f (t) · · · y

(0)
f (t) ],

u′

0(t) = [ u
(m)
f (t) · · · u

(0)
f (t) ],

(4)

and parameter vectors

a′ = [ an · · · a0 ], b′ = [ bm · · · b0 ].

Let us denote the Laplace transform of y0(t), y0(t)
etc as

y̌0(s) = L{y0(t)}, y̌0(s) = L{y0(t)},

etc. Also denote the denominator of the all pole
prefilter [in (2)] transfer function as

F (s) =
n∑

i=0

fis
i.

Then we can verify from (2) and (4) that (neglect-
ing the effect of the initial conditions)

y̌0(s) = Fn(s)y̌0(s), ǔ0(s) = Fm(s)ǔ0(s), (5)

where

Fi(s) =
1

F (s)

[
si · · · s 1

]′
, i ≤ n.

Note that the transfer functions Fi(s) in the above
equation are causally implementable. As we shall
describe later in more detail, there exists reli-
able numerical methods to implement the vector
valued filter Fi(s) from sampled data assuming
suitable inter-sample behaviour. We also point out
that it is often preferred to choose the coefficients
{fi}

n
i=0 such that F (s) has n multiple zeros. The

bandwidth of F (s) is chosen to match the band-
width of interest.

Assume that it is possible the compute
{y0(tk)}N

k=1 and {u0(tk)}N
k=1 by using a suitable

numerical technique. Then we can form the
matrices

Y0N =
N∑

k=1

y0(tk)y′

0(tk),

V0N =
N∑

k=1

y0(tk)u′

0(tk),

U0N =
N∑

k=1

u0(tk)u′

0(tk).

Then from (3) we have
[
Y0N V0N

V′

0N U0N

] [
a

b

]
= 0(m+n+2)×1 (6)

Therefore, estimates of a and b are obtained by
solving (6). We point out that due to numerical



errors introduced in the digital simulation of the
continuous-time state-variable filtering, (6) does
not hold exactly 1 . Therefore, it is required to
solve (6) in a least squares or total least squares
sense.

3. IMPLEMENTATION OF SVF

A crucial step in direct continuous-time model
identification lies in the implementation of the
SVF. This step involves accurate computation of
the regressor vectors y0(tk) and u0(tk) at the
sampling instants {tk}

N
k=1 from the sampled data

{u0(tk)}N
k=1 and {y0(tk)}N

k=1. The numerical tech-
nique used here is the standard discretization of
the underlying continuous-time state space model
of the filter Fn(s). Note that the discrete-time rep-
resentation of the continuous-time filter Fn(s) de-
pends also on the assumptions made on the input
inter-sample behaviour. The popular assumptions
considered here are zero order hold (ZOH) and
first order hold (FOH). In the ZOH assumption
the sampled signal is assumed to remain constant
between the sampling instants, while for the FOH
assumption the input signal is assumed to vary
linearly between sampling instants. In an EIV
environment, it is necessary to know the details
of the discrete-time implementation of the SVF.
This is because the observed data being noise cor-
rupted, we also pass the measurement noise along
with the true signal through the SVF. Therefore,
at a later stage it is necessary to characterize the
statistical properties of the SVF output. Hence
in this section we give a brief description of the
discrete-time state space model employed to im-
plement the SVF. Although our discussion here
is limited to ZOH and FOH assumptions 2 , the
following theory can be extended to higher order
hold assumptions.

Consider that an arbitrary signal w(t) is the filter
input Fn(s) and denote the corresponding (n +
1) × 1 vector valued output by w(t). Then from
the standard results on controllable canonical
form representation of continuous-time systems,
the filtering operation can be expressed in the
following state space form:

ẋ(t) = Ax(t) + ew(t),

v(t) = f ′x(t) + w(t),

1 We assume here that the simulation errors can be ne-
glected in comparison with the estimation errors intro-
duced by the presence of additive noise on the input-output
data. Therefore, we assume the numerical simulation errors
to be negligible, and concentrate in the sequel on the effect
of the additive noise on the SVF outputs.
2 In most applications ZOH and FOH assumptions are
sufficient to get estimates of desired accuracy.

where e is the first column of the n dimensional
identity matrix and

A =




−f1 · · · −fn−1 −fn

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0


 , f =




−f1

−f2

...
−fn


 .

Consequently, the output vector w(t) is given by

w(t) = [ v(t) x′(t) ]′. (7)

In order to compute the output w(tk) at sam-
pling instants {tk}

N
k=1 from the input samples

{w(tk)}N
k=1, we can discretize the above state

space representation. Introduce

hk := tk+1 − tk. (8)

At this point we shall assume that A is invert-
ible, i.e. the SVF is asymptotically stable. This
is, in fact, a natural assumption. Then for ZOH
assumption one can show that the SVF can be im-
plemented using the sampled data in the following
state space form (Sinha and Rao, 1991):

x(tk+1) = eAhkx(tk) + [eAhk − I]A−1ew(tk).

Under FOH assumption, one can show that the
state vector x(tk) satisfies (Sinha and Rao, 1991)

x(tk+1) = eAhkx(tk) + β1kw(tk+1) + β0kw(tk),

where β0k and β1k are defined as

β0k = {eAhkA−1 − (1/hk)(eAhk − I)A−2}e,

β1k = {(1/hk)(eAhk − I)A−2 − A−1}e.

Once x(tk) is computed, the computation of v(tk)
is straightforward in both cases (ZOH and FOH):

v(tk) = f ′x(tk) + w(tk).

Therefore, the state space implementation of the
SVF output takes the following form:

x⋆(tk+1) = Ψkx⋆(tk) + ξkw⋆(tk),
v(tk) = γ′x⋆(tk) + δw⋆(tk),

(9)

where for ZOH assumption we have

x⋆(tk) = x(tk), w⋆(tk) = w(tk) (10)

and
Ψk = eAhk , γ = f ,

ξk = [eAhk − I]A−1e, δ = 1.
(11)

For the FOH assumption we have an augmented
state vector and time delayed input signal:

x⋆(tk) = [ x′(tk) w(tk) ]′, w⋆(tk) = w(tk+1),
(12)

while the matrices in the state space form are
given by

Ψk =

[
eAhk β0k

0 0

]
, ξk =

[
β1k

1

]
,

γ = [ f ′ 1 ]′, δ = 0.
(13)



4. NOISE EFFECTS ON SVF

One of the main step involved in the development
of an identification approach for continuous-time
dynamic EIV models is to analyze the statisti-
cal behaviour of the SVF output. Note that in
presence of additive measurement noise in the
observed data, the SVF output will also be noise
contaminated. In this section we give a second-
order statistical analysis of the SVF output vec-
tor when a zero-mean white noise of unit vari-
ance contaminates the SVF input. In that goal,
consider that the SVF input w(tk) at sampling
instant tk has two parts:

w(tk) = w0(tk) + w̃(tk),

where w0(tk) is deterministic, and w̃(tk) is the
noise contribution. Furthermore, assume that
{w̃(tk)}N

k=1 constitutes a zero-mean white noise
sequence of unit variance. Using a similar notation
as above we shall denote the noise-free part of the
SVF output w(tk) by w0(tk), while the noise con-
tribution in w(tk) will be denoted by w̃(tk). Our
main objective here is to study the asymptotic
(N → ∞) second-order statistical properties of
the matrix

WN =
1

N

N∑

k=1

w(tk)w′(tk).

We emphasize that the estimation algorithms to
be developed later employ matrices having similar
form as WN . This is the reason why we analyze
the asymptotic behaviour of WN . Now from (7),
(10) and (12) we see that w(tk) is a linear function
of x⋆(tk), and the associated mapping is time-
invariant. Therefore, we shall characterize the
asymptotic properties of

XN =
1

N

N∑

k=1

x⋆(tk)x′

⋆(tk).

The following result plays a key role in the
development of the algorithms for continuous-
time EIV models.

Proposition 1. Let the sampling intervals hk have
a positive lower bound such that hk ≥ h > 0.
Assume also that the sequence w̃(tk) has bounded
fourth-order moments, and the signal w0(t) is
bounded for all t. Then

lim
N→∞

XN − E XN = 0.

with probability one, where E denotes the math-
ematical expectation operator.

Proof: Due to space limitations the proof of the
proposition will be omitted here. However, we
shall give an outline. At the first step it is shown
that there exists a sequence of positive numbers

rk such that rk → 0 as k → ∞ and the elements
of the matrix |E w(tk)w′(tl)| are bounded above
by rk−l for k ≥ l. At this point we use the fact
that the eigenvalues of the matrix Ψk are strictly
inside the unit disc 3 . It is also required to use the
assumption hk ≥ h > 0. Subsequently, standard
ergodicity results (Ljung, 1999) for stationary
stochastic processes can be extended in this case
to derive the final result.
Note that for uniform sampling the discrete-time
system in (13) is stable and time-invariant, and in
that case the above proposition is well-known, see
(Ljung, 1999), for example.

Next, we shall examine the quantity E XN . Denote
the noise-free part of x⋆(tk) by x⋆0(tk), and the
noise contribution by x̃⋆(tk). Then it is readily
verified that

E XN = X0N + X̃N , (14)

where

X0N =
1

N

N∑

k=1

x⋆0(tk)x′

⋆0(tk),

X̃N =
1

N

N∑

k=1

Ek, Ek = E {x̃⋆(tk)x̃′

⋆(tk)}.

(15)

Next we examine X̃N . For that purpose let us
introduce a few more notations. Define the doubly
indexed sequence

Φ(k, l) =

{
I, l = k + 1

Φ(k, l + 1)Ψl, l ≤ k ≤ 2
(16)

Also note that

Φ(k, l) = ΨkΦ(k − 1, l). (17)

Then using (13) recursively we can derive that

x⋆(tk) =

k−1∑

l=1

Φ(k − 1, l + 1)ξlw⋆(tl).

Therefore, using the whiteness assumption on the
measurement noise sequence {w̃(tk)}N

k=1, it can
be verified after a few steps of straightforward
calculations that

Ek =

N−1∑

l=1

Φ(k − 1, l + 1)ξlξ
′

lΦ
′(k − 1, l + 1).

In the estimation algorithms to be described later
it is required to compute X̃N . The computation
might appear to be computationally demanding.
However, X̃N can be computed efficiently by a
recursion. Using (16) and (17) in the last equation
we can check that Ek is given recursively as the
solution to the Lyapunov equation (for a time
varying system)

Ek+1 =

{
ΨkEkΨ

′

k + ξkξ′

k, k > 1,
ξ1ξ

′

1, k = 1.
(18)

3 This follows from (8), (11) and (13) because F (s) has all
its roots in the left half plane.



Now from (15) we see that X̃k satisfies the recur-
sion

X̃k+1 =
k

k + 1
X̃k +

1

k + 1
Ek+1. (19)

We note by passing that for uniform sampling,
the linear system (13) is time-invariant. Then for
large N , the matrix EN converges to the solution
to the associated steady state Lyapunov equation.
It is also easy to verify that

lim
N→∞

X̃N − EN = 0

for the time-invariant case. Therefore, X̃N also
satisfies the same Lyapunov equation.

We conclude this section by evaluating WN from
XN . From (14) and (15) we see that for sufficiently
large N , we can approximate WN as

WN = W0N + W̃N , (20)

where

W0N =
1

N

N∑

k=1

w0(tk)w0(tk), (21)

W̃N =

[
γ′X̃Nγ + δ2 γ′X̃N (1 : n, :)

X̃N (:, 1 : n) X̃N (1 : n, 1 : n)

]
.(22)

Note that in the last equality we have used (7), the
state space descriptions in (9)-(13), and common
Matlab notation. We emphasize that (18) holds
for both ZOH and FOH assumptions.

5. ERRORS-IN-VARIABLES PROBLEM

When we deal with an EIV problem using a direct
approach, we have noise corrupted regressors. As-
sume that we pass the input-output observations
u(t) and y(t) through the filters Fm(s) and Fn(s),
respectively as in (5) and denote the correspond-
ing filter outputs as u(tk) and y(tk). Using these
regressors we form the matrices

YN =
1

N

N∑

k=1

y(tk)y′(tk), UN =
1

N

N∑

k=1

u(tk)u′(tk).

Then from the discussion in the previous section
we have

YN = Y0N + σyỸN , UN = U0N + σuŨN ,

where

Y0N =
1

N

N∑

k=1

y0(tk)y′

0(tk),

U0N =
1

N

N∑

k=1

u0(tk)u′

0(tk).

are the contribution from the noise-free part of
the observed data, while ŨN and ỸN are the
asymptotic contribution from the measurement

noise. Note that the noise sequences are not nec-
essarily unit-variance. Hence we have the scaling
σy and σu. The matrices ŨN and ỸN can be
computed using the algorithm described in the
previous section. We also form the matrix

VN =
1

N

N∑

k=1

y(tk)u′(tk),

for which a similar result as proposition 1 can be
proved where we can show for large N that

VN →
1

N

N∑

k=1

y0(tk)u′

0(tk)

with probability one. Therefore a calculation sim-
ilar to that of (6) gives

[
YN VN

V′

N UN

] [
a

b

]
=

[
σyỸNa

σuŨNb

]
. (23)

In the last equation we have n + m + 3 unknowns
to solve from n + m + 2 equations. Therefore,
we need to find additional equations in order to
solve the unknowns uniquely. The approach we
adopt here to circumvent this problem is to use
two different prefilters. This means that we obtain
two sets of regressors {y(i)(tk),u(i)(tk)}2

i=1 using

two different prefilter pairs {F
(i)
n (s),F

(i)
m (s)}2

i=1.
Consequently we get two systems of equations like
(23):

[
Y

(i)
N V

(i)
N

V
(i)′

N U
(i)
N

] [
a

b

]
=

[
σyỸ

(i)
N a

σuŨ
(i)
N b

]
, i = 1, 2;

(24)

where Y
(i)
N etc, denote the matrices obtained from

y(i)(tk) etc. It is now straightforward to eliminate
σy and σu from the above systems of equations.
We have [

Z11 Z12

Z21 Z22

] [
a

b

]
= 0 (25)

where

Z11 = Ỹ
(1)−1
N Y

(1)
N − Ỹ

(2)−1
N Y

(2)
N

Z12 = Ỹ
(1)−1
N V

(1)
N − Ỹ

(2)−1
N V

(2)
N

Z21 = Ũ
(1)−1
N V

(1)′

N − Ũ
(2)−1
N V

(2)′

N

Z22 = Ũ
(1)−1
N U

(1)
N − Ũ

(2)−1
N U

(2)
N

Therefore a least squares or total least squares
solution of (25) leads to the estimates of a and b.

6. ILLUSTRATIVE EXAMPLE

In the simulations we consider the system (Chou
et al., 1999)

y
(2)
0 (t) + 2y

(1)
0 (t) + y0(t) = u

(1)
0 (t) − u0(t).

The input u0(t) is chosen as a white binary ±1
signal obtained as sign(randn(N, 1)). Note that
in the case of the chosen piece-wise constant
excitation signal, the system response can be



a1 a2 b1 b0

True value 2 1 1 −1

Mean 2.01 0.97 0.96 −1.01

MSE 0.028 0.019 0.113 0.024

Table 1. Simulation results for
SNR = 5 dB.

a1 a2 b1 b0

True value 2 1 1 −1

Mean 1.99 0.99 0.98 −0.99

MSE 0.004 0.004 0.025 0.005

Table 2. Simulation results for
SNR = 10 dB.

calculated exactly at the sampling instances via
appropriate ZOH discretization of the continuous-
time system. The variance σy of the additive
noise at the output is 0.0886. The input noise
variance σu is 0.3164. With this choice the signal-
to-noise ratio (SNR) at both input and output is
5 dB. The signals are sampled uniformly with a
sampling interval 0.01 sec. The number of samples
is N = 1785, i.e. the observation time is 17.85
sec. The denominators of the two prefilters for
reconstructing the derivatives are chosen as

F (1)(s) = s2 + 2s + 1, F (2)(s) = s2 + 2s + 5.

In the identification process, we used ZOH as-
sumption for the input signal and FOH assump-
tion for the output signal. The estimation results
are shown in Table 1. They are based on 100 inde-
pendent Monte Carlo simulations. In the table we
have shown the mean values of the estimates ob-
tained from 100 runs along with the mean square
error (MSE). Results for 10 dB input-output SNR
are shown in Table 2.

7. CONCLUSIONS

In this paper we have addressed the problem of
identifying continuous-time dynamic EIV models
using a direct identification approach. In that
goal, we have presented a new framework for
analyzing the noise effect on the state-variable
filtering. The results therefrom are used to develop
an algorithm for identifying continuous-time dy-
namic EIV models. The new algorithm employs
two state-variable filters. It does not require any
numerical search and is computationally efficient.
The proposed method can be applied to non-
uniformly sampled data and extended for iden-
tifying discrete-time EIV models.

8. REFERENCES

Anderson, B. D. O. and M. Deistler (1984). Iden-
tifiability of dynamic errors-in-variables mod-
els. J. Time Series Analysis 5, 1–13.

Beghelli, S., R.P. Guidorzi and U. Soverini (1990).
The Frisch scheme in dynamic system identi-
fication. Automatica 26, 171–176.

Chou, C.T., M. Verhaegen and R. Johans-
son (1999). Continuous-time identification
of SISO systems using Laguerre functions.
IEEE Transactions on Signal Processing
47(2), 349–362.

Garnier, H. and P.C. Young (2004). Time-domain
approaches for continuous-time model identi-
fication from sampled data. In: Invited tuto-
rial paper for the American Control Confer-
ence (ACC’2004). Boston, MA (USA).

Garnier, H., M. Mensler and A. Richard (2003).
Continuous-time model identification from
sampled data. implementation issues and per-
formance evaluation. International Journal of
Control 76:13, 1337–1357.

Ljung, L. (1999). System Identification - Theory
for the User, 2nd edition. Prentice Hall. Up-
per Saddle River, NJ, USA.

Markovski, I., J.C. Willems and B. De Moor
(2002). Continuous-time errors-in-variables
filtering. In: 41st IEEE Conference on De-
cision and Control (CDC’02). Las-Vegas,
Nevada (USA). pp. 2576–2581.

Schoukens, J., R. Pintelon, G. Vandersteen and
P. Guillaume (1997). Frequency-domain sys-
tem identification using non-parametric noise
models estimated from a small number of
data sets. Automatica 33:6, 1073–1086.

Sinha, N. K. and Rao, G.P., Eds.) (1991). Identi-
fication of continuous-time systems: Method-
ology and com-puter implementation. Kluwer
Academic Publishers. Dordrecht.
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