
1. INTRODUCTION 
 
As the modern computing power is enhancing due to 
the development of fast computer, the requirements 
of the control performance become tighter and the 
target processes has been extended to various non-
conventional processes such as those in 
Biotechnology (BT) and Nano Technology (NT) 
areas. Thus, the models for control become more 
sophisticated and the modern model-based control 
techniques have to process vast amount of 
information to meet the high standard of control 
performance. In order to achieve more accurate and 
precise control performance, the most rigorous 
solution for the control of nonlinear system is to use 
the optimal control strategy obtained by dynamic 
optimization considering the details of the process 
characteristics such as nonlinearity and high 
dimensionality. 
 
The most desirable control strategy can be obtained 
using standard Dynamic Programming (DP) with 
rigorous process model. The aim of DP is to find the 
optimal time-varying input policies by minimizing 
the objective function which is defined according to 
the specific control purposes and in most cases, the 
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optimal strategy is calculated rather numerically than 
analytically. If the size of problem is large, the 
calculation load can be enormous and the solution 
cannot be obtained within the given sampling time 
even with quite fast computer. This problem is called 
‘Curse of Dimensionality’ and this makes the on-line 
control using DP virtually impossible (Kaisare, et al., 
2003). However, as the Neuro-Dynamic Programm-
ing (NDP) approach is introduced, the application of 
DP approach to nonlinear processes becomes feasible 
and the field of application for NDP is growing. This 
approach is to perform the vast amount of calculation 
offline, to learn the optimal strategy in a simple form 
of approximation by using the data from simulations 
and experiments and to calculate the optimal strategy 
online based on the cost function approximator which 
is trained offline. Cost-to-go or profit-to-go function 
as a performance objective function for DP can be 
approximated by a nonlinear function or neural 
network (NN) and this approach can reduce the 
calculation burden so that the dynamic programming 
approach can be applied online. But the NN requires 
appropriate training before use and the training of 
NN is not trivial for many cases. To avoid the 
difficulty in NN training, local approximation 
method could be used such as k-nearest neighbor 
(kNN) method. 
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In this study, Simulation-Approximation-Evolution 
(SAE) algorithm suggested by Kaisare et al. (2003) is 



investigated on a pH neutralization process. The SAE 
algorithm is based on neuro-dynamic programming 
(NDP) approach. In this approach, the Bellman 
iteration is very important for its performance since 
the optimal control strategy is usually unknown. In 
this study to investigate the control performance of 
NDP approach, the training data for cost function 
approximator are obtained from an optimal control 
strategy of pH neutralization process considering the 
peculiar nature of the process so that the Bellman 
iterations are not necessary.  
 
The cost function approximation is usually based on 
the state information. However, the outputs of the 
process are the function of states and the output 
equation involves process parameters which are 
uncertain. In this case, the control based on the state 
may result steady-state offset in the process output. 
Thus, the feature map of the process information has 
been added in this study to eliminate the steady-state 
offset. In addition to that, the various aspects of 
control performance of NDP approach have been 
investigated through the simulations and experiments 
of a pH neutralization apparatus. 
 
 

2. NEURO-DYNAMIC PROGRAMMNG (NDP) 
 
 
2.1 Dynamic Programming 
 
A discrete-time dynamic system can be described by 
an n-dimensional state vector x(k) and an m-
dimensional input vector u(k) at time step k. Choice 
of an m-dimensional control vector u(k) determines 
the transition of the system from x(k) state to x(k+1) 
through the following relations (Bertsekas and 
Tsitsiklis, 1996; Bryson, 1999), 

(( 1) ( ), ( )h )x k F x k u k+ =   (1) 
where Fh denotes the process model equation and h 
represents the sampling time. A general dynamic 
optimization problem for such system is to find the 
optimal sequence of control vectors u(k) for k=0, …, 
N–1 to minimize a performance index which is 
related with cost-to-go function (J). 
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where φ  is the one-stage-cost and Nφ  represents 
the final cost. Among many ways, the most popular 
one-stage-cost can be chosen as follows, with the 
weighting factors Q and R. 
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where k=0, …, N−1, u(0)=u0, and xsp denotes the set 
point. In addition to that, ∆u(k)=u(k)−u(k−1). 
Then, the optimal cost-to-go can be expressed as 
follow at time-step k and. 
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where superscript * implies the optimal value. If N is 
infinite, then it becomes the infinite horizon cost-to-
go function. It can be expressed as a recursive form. 
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It can be shown to satisfy the Bellman equation 
(Bertsekas and Tsitsiklis, 1996). 
 
For simplicity, * ( ( ))kJ x k  will be shortened as J*(k). 
The final goal of DP is to find the input strategy u(k), 
k=1, …, N−1 so that the optimal cost-to-go function 
J*(k) satisfies the Bellman equation for all time-step k. 
The solution can usually be obtained numerically and 
it suffers from the curse of dimensionality when it 
involves the gridding of large state space dimension. 
In order to circumvent the problem, one approach 
suggested by Kaisare, et al. (2003) described in the 
next section can be applied. 
 
 
2.2 Simulation-based dynamic programming 
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Fig. 1. Architecture for offline computation of cost-

to-go approximation. 
 
Simulation-Approximation-Evolution (SAE) algori-
thm (Kaisare, et al., 2003) is one of the reinforce-
ment learning methods and it involves computation 
of the converged cost-to-go approximation offline, 
which is described in Fig. 1. The SAE algorithm is 
roughly composed of two parts. The first part is 
“Simulation Part”. Simulation is performed with sub-
optimal control law to make training data set which is 
used for the calculation of the infinite horizon cost-
to-go function in (6) for each state visited during the 
simulation, and the suboptimal cost-to-go function is 
calculated as follow. 
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where N is sufficiently large for the system to reach 
new steady state. The second part is “Cost App-
roximation Part.” In this part, the cost-to-go function 
approximation is performed by fitting a neural 
network or other function approximator to the data 
from “Simulation Part.” In addition to that, Bellman 
iteration and policy update procedure is performed to 
improve the approximation of the cost-to-go function 
(Kaisare, et al., 2003). 
 
Since the optimal control law is not available to 
begin with, a suboptimal control policy is used for 
the cost-to-go approximation and the resulting 
control law has to be suboptimal. To improve the 
approximation, the cost or value iteration can be 
performed until convergence based on the Bellman 
equation (Kaisare, et al., 2003). 

(1 min ( , ) ( , )i i
hu

)J x u J F x uφ+ = +       (9) 

This step may impose an enormous computational 
burden, but it is performed offline. 
 
 
2.3 Approximator 
 
In the algorithms related to NDP, the performance of 
the approximator for the cost-to-go approximation is 
crucial. As approximators, the global approximator 
and the local approximator can be considered. Global 
approximators like neural network (NN), polynomial, 
and etc. are the parametric approximators which 
require extensive offline training. The training of NN 
is very difficult procedure to converge and the 
training of NN is quite critical to the performance of 
the NDP approaches. The local approximators such 
as k-nearest neighbor (kNN), kernel-based 
approximator, and so on are nonparametric 
approximators which require extensive online 
querying instead of offline training. If both methods 
provide comparable accuracy of approximation, the 
choice of approximator will not affect the control 
performance of the NDP approach. 
 
 
2.4 Feature maps 
 
If the states are not measured, rather estimated and 
the set points for states are obtained from a model of 
output equation, the NDP approach will track the 
calculated set points which do not exactly represent 
the important process outputs. In this case, the NDP 
approach may result in the steady-state offset. The 
remedy of this problem is to use feature map so that 
the set points for actual process output can be defined. 
The feature map in this case can be the output 
equation relating the states and outputs. Then, the set 
points for the objective function in (3) can be the one 
for actual output instead of ones for estimated states. 
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Fig. 2. The approximation architecture that uses 

feature map. 
 
 

3. pH NEUTRALIZATION PROCESS 
 
The pH neutralization process has long been taken as 
a representative benchmark problem of nonlinear 
chemical process control due to its nonlinearity and 
time-varying nature. In this study, the pH 
neutralization process is selected as the control target 
system with NDP approach.  
 
 
3.1 pH neutralization process 
 
The neutralization is a chemical reaction. The control 
objectives are to drive the system to a different pH 
conditions (tracking control) or to regulate the 
effluent pH value despite the disturbance by 
manipulating the flow rate of titrating stream 
(Henson and Seborg, 1994, 1997). The process is 
illustrated in Fig. 3 and the operating conditions are 
shown in Table 1.  
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Fig. 3. The pH neutralization process. 
 

Table 1 Operating conditions of pH neutralization 
process 

 
Symbols Values Symbols Values 
V  2500 

[ml] 
1q  9.0 

[ml/s] 

1[ ]q  0.003 M  3HNO
55.0 10−× M 2 3H CO

2q  0.6 
[ml/s] 

2[ ]q  0.01 M  3NaHCO

3q  8.5 
[ml/s] 

3[ ]q  0.003 M  NaOH
55.0 10−× M 3NaHCO

 
The reactor type of the neutralization process is a 
continuous stirred tank reactor (CSTR) with baffles, 
which has a volume of 2.5L. The inlet stream 
consists of a strong acid stream (q1: feed solution), a 



weak acid stream (q2: buffer solution) and a strong 
base stream (q3: titrating solution), which are pumped 
to the reactor. It is assumed that the perfect mixing in 
tank and the complete dissociation in solution at 
25oC are reached (Yoo, et al., 2004). 
 
 
3.2 Model for pH neutralization Process  
 
Generally, the strong acid-base reaction is always 
assumed to reach equilibrium in water solution 
almost instantly. This implies the reaction rates 
approach infinity. So, the reaction rate terms can be 
ignored in process model which can be simplified. 
From this approach, Gustafsson and Waller proposed 
a model using reaction invariants (Gustafsson and 
Waller, 1983; Yoo, et al., 2004).  
 
As the strong acid and base solutions are completely 
dissociated into ions, the chemical reactions with a 
weak acid solution reach equilibrium state. The 
chemical reactions in the system are as follows (Yoo, 
et al., 2004). 
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          (10) 

 
The total amount of the reaction invariant is not 
affected by the degree of chemical. According to this 
fact, the reaction invariants can be derived from the 
stoichiometry. As Gustafsson and Waller (1992) 
proposed, two kinds of reaction invariant variables 
are defined in this process. The first reaction 
invariant (state variable) is the concentration of 
charge related ions. The other reaction invariant 
(another state variable) is the total concentrations 
related to carbonate ions. The relationship between 
pH and the reaction invariants is given by a nonlinear 
equation (Gustafsson and Waller, 1992; Yoo, et al., 
2004). 
 
Reaction invariants for this process are defined as: 
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where Wa denotes the charge related reaction 
invariant, Wb denotes the carbonate ion related 
reaction invariant, and i=1,2,3,4 for each stream in 
Fig. 3. The pH value is the negative logarithm of the 
hydrogen ion concentration ( pH log H+⎡ ⎤= − ⎣ ⎦ ), so the 
pH value can be determined if Wa and Wb are known. 
 
If it is assumed that the flow rates and the 
concentrations of the feed and buffer streams are 
known except for two properties, Wa1 and Wb2 and 
they consists of unknown parameters (θ ). From this 
conditions, the following state space model can be 
constructed (Yoo, et al., 2004): 
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3.3 Optimal Control Strategy 
 
In the “Simulation Part” of SAE algorithm (Fig. 1), 
the suboptimal control law is necessary to get good 
training data sets. Furthermore, the training data can 
be improved through the Bellman iterations and the 
training of the approximator has to be performed for 
each Bellman iteration. This procedure requires 
enormous offline calculation burden. However, if the 
optimal control strategy is known, the improvement 
of cost-to-go function by Bellman iteration is not 
necessary. Fortunately, for this process, an optimal 
control can be devised from a simple principle. From 
the steady-state balance, the required flow rate, uf, of 
titrating stream to make the mixture of inlet streams 
at the desired pH value can be calculated. Next, to 
minimize the transient period, the additional amount 
of titrating stream, S, should be injected in a shortest 
possible time to make the holdups of the CSTR at the 
desired pH value (Fig. 4). To solve this problem, an 
LP problem can be set up as follows. 
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where u0 is the initial steady-state value of input and 
n is an integer which represents the number of 
sampling intervals to reach new steady state. In this 
manner, the effluent pH value can be reached to the 
desired value in shortest time without overshoot or 
undershoot as shown in Fig. 4. This control law may 
not produce exactly optimal strategy due to the 
residence time of the effluent stream considering the 
constraints of the flow rates but it is close enough as 
an optimal control law. Moreover, the required 
amount of additional injection of the titrating stream, 
S, can be adjusted to make the performance better. By 
using this optimal strategy, the laborious Bellman 
iteration can be omitted in this case. 
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Fig. 4. Optimal control strategy in pH neutralization 

experiment  
 
 

4. RESULTS AND DISCUSSIONS 
 
The NDP approach is applied to the pH neutralization 
process with NN as a global approximator and kNN 
as a nonparametric local optimization. In addition to 
that, feature map has been used for improved 
performance of NDP algorithm. 
 
 
4.1 Choice of Approximator 
 
The different choices of approximator for cost 
function, a multilayer feedforward NN and a local 
approximator using k-Nearest Neighbor are investi-
gated. The NN can approximate the entire data with a 
single scheme and it does not require to store the 
training data while the training of NN takes long time 
and can be quite difficult. Meanwhile, the kNN 
approach does not require training while the training 
data have to be stored and it takes time to query 
nearest data points. In this study, there are many 
difficulties in training NN for pH neutralization 
process, it is recommended to use the kNN approach. 
In terms of control performance, both methods do not 
exhibit any difference as long as the approximation 
has same degree of precision as shown in Fig. 5. 

 
Fig. 5. Comparison of results between NDP 

approaches using kNN and NN with respect to 
set point change (pH 6.3 7). 

4.2 Performance Comparison of NDP Approach 
 
The case of multiple step changes in set point shows 
that the NDP using kNN outperforms the well-tuned 
PI control as expected as shown in Fig. 6. Also, for 
the disturbance in feed composition, the NDP 
approach can reject the disturbance effect very 
efficiently compared to PI control as shown in Fig. 7. 
 

 
 
Fig. 6. Comparison of results between PI control and 

NDP using kNN with respect to multi-step set 
point change (7 8 5.5 7). 

 

 
 
Fig. 7. Comparison of results between PI control and 

NDP using kNN with respect to disturbance 
(15% decrease in Wa1 at time=10 min.). 

 
 
4.3 Effect of Feature Map 
 
The NDP approach requires the cost-to-go function 
values calculated based on the states. In pH 
neutralization process, the states are not measured 
and they are estimated by extended Kalman filter. 
Since the measured variable is the pH value, the set 
points for objective function in NDP should be 
calculated using the model. If there are mismatch 
between the model and process, the calculated set 
points may not coincide with the desired pH value. 
As shown in Fig. 8, steady-state offset can be 
observed without feature maps while the use of 
feature map can eliminate the steady-state offset. 



 
 
Fig. 8. Experimental comparison between using NDP 

using kNN with and without a feature map with 
respect to multi-step set point change (7 8  
5.5 7). 

 
 
4.4 Experimental Results for pH Neutralization with 
NDP 
 
To verify NDP algorithm for real system, pH 
neutralization experiments were performed. The 
control by NDP algorithm showed faster and better 
control performance than PI controller in Fig. 9. Note 
that the NDP approach showed some overshoot at the 
later parts of the experiment even though the first 
step change showed almost perfect performance. This 
performance degradation seemed to be caused by the 
imperfect modeling of the pH neutralization process. 
The improvement on the model accuracy should be 
investigated further in the next research. 
 

 
 
Fig. 9. Experimental comparison between using NDP 

and PI controllers with simulation with respect 
to multi-step set point change (7 8  5.5 7). 

 
 

5. CONCLUSIONS 
 
From the simulation and the experiments of a pH 
neutralization process, NDP algorithm using either 
the global approximator (NN) or the local approxi-
mator (kNN) outperforms the well-tuned PI control. 

These results are not surprising because NDP method 
uses much more information and computation. 
However, if the process is quite complex, this 
approach can achieve precise optimal control 
performance without excessive online computational 
burden. In this study, the NDP approach is applied to 
a chemical process of pH neutralization which is a 
representative benchmark nonlinear process and the 
possibility of applying DP concept even with short 
sampling period to complex nonlinear chemical 
processes is verified. In terms of offline preparation 
of NDP approach, the local approximators such as 
kNN are preferred over global approximators in the 
light of cost-to-go approximation. The local 
approximator can avoid the hard problem of training 
of approximator. Also, the remedy for the cases of 
uncertainty in output equation is suggested. The 
verification of NDP performance for real system was 
investigated by pH neutralization experiment. 
Through the simulations and experiment, the control 
performance using NDP approach is proved to be 
applicable to complicated nonlinear processes with 
very high performance.  
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