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Abstract: An integral approach for dynamic data reconciliation that combines a direct 
numerical integration via Simpson’s rule and data smoothing via discrete wavelet 
decomposition is presented. By simple numerical integration, the differential-algebraic 
equations governing the material balances are transformed into algebraic constraints to 
formulate the reconciliation problem. The frequency responses and the frequency contents 
of the measured variables are considered to determine the cut-off frequencies for data 
smoothing. Repetitious solutions for reconciliation using a moving data window are then 
used to generate the dynamic reconciled data for gross error detection. Compare with the 
other methods such as the Kalman filter and another sophisticated integration approach, 
this proposed method is simpler and has better results.Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
Through the use of data reconciliation techniques, 
the corruption of process variables due to 
measurement noises can be reduced so as to provide 
correct process data and information which are 
useful for improving the understanding of the 
process and the control performance etc. Formally, 
data reconciliation can be defined as the estimation 
of variables from their measurement data to reduce 
measurement error through the use of the temporal 
and functional redundancies. Mathematically, it can 
be formulated as an optimal estimation problem 
aimed to a constrained least-squares or maximum 
likelihood objective function. Reviews of these 
methods and strategies have been given in some 
published books (Mah, 1990; Madron, 1992;  
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Romagnoli and Sanchez, 2000; Narasimhan and 
Jordache, 2000, etc.). In contrast to the reconciliation 
of data for process under steady-state, dynamic data 
reconciliation is more desirable, as most of the plants 
in running are dynamic in nature and are seldom 
truly under steady-state. 
 
Methods using Kalman filter estimation, nonlinear 
programming, and integral approach etc. have been 
adopted to solve the above mentioned dynamic 
reconciliation problem.  Among which, the Kalman 
filter estimation techniques are most often mentioned. 
Kalman filtering techniques can be adapted to take 
advantage of spatial and temporal redundancy 
(Stanley and Mah, 1977). The need for an accurate 
model in the formulation and in the implementation 
for a Kalman filter is a major bottleneck. The 
modelling error occurs inevitably in the procedures 
of linearizing nonlinear processes. Because of these 
methods are highly dependent on the accuracy of 
model, poor performances are inevitable when the 
process model encounter errors.  
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Dynamic data reconciliation by the use of nonlinear 
programming (NLP) techniques is another approach. 
The burden and the sophistications of the 
computation are the main concerns of this kind of 
methods.  
 
Alternatively, integral approach (Bagajewicz and 
Jiang; 1997) provides another choice for solving the 
problem. By the use of polynomial approximation, 
smooth results compared with other dynamic 
reconciliation methods can be obtained. But, it may 
be difficult to separate successfully the signal from 
noise. As a result, some significant part of the signals 
may be removed along with the noises, if the order of 
approximation is not taken sufficiently. In the other 
way, if the order of approximation polynomial is 
taken higher, a large number of computations and 
some huge matrices in the formulation due to a large 
number of parameters will be encountered. As a 
result, the order of the polynomial is essential and 
needs to be determined before the data smoothing 
can be performed. In fact, polynomial approximation 
may not fit those data that have special dynamic 
trends, and data filtering may be preferred.  
 
In smoothing the dynamic data, the frequency 
contents of the data are important. The frequency 
content of any measured signal in a dynamic process 
is related to the dynamic lag (e.g. the time constant) 
of the process. As for noise filtering, the wavelet 
decomposition provides an excellent tool without 
entangling the signal with noises while filtering. A 
wavelet-based regulation of dynamic data 
reconciliation method had also been proposed (Chen 
et. al., 2002). It is accomplished by wavelet 
regulation which determines the optimal scale of the 
wavelet decomposition level. Then, the differential 
equations are converted into algebraic equations and 
the dynamic reconciliation problem is solved by SQP 
method. But, the sophistication of computation is the 
main difficulty of this method. Thus, filtering by 
wavelet-based method based on simpler way will be 
preferred to the smoothing by polynomial 
approximation, and will be used in this study. In 
order to facilitate the integration approach and the 
data smoothing for dynamic data reconciliation, an 
alternative approach that combines direct numerical 
integration and the wavelet-based filtering of 
dynamic data are proposed. In this proposed 
approach, the dynamic data are filtered using a 
discrete wavelet decomposition technique before 
computing for reconciliation. The filtering cut-off 
frequency is determined by the dynamics of the 
process.  By integrating the filtered data, the 
differential-algebraic equations which govern the 
material balances are transformed into algebraic 
constraints. And, the reconciliation problem is solved 
just like the one for steady-state.  
 

 
2. WAVELET FILTERING 

 
Ιn theory, the wavelet filtering technique is useful in 
pre-treating measured signals. Τhe wavelet filtering 
of noisy data is accomplished by discrete wavelet 

transformation (i.e. DWT). A time-scale (frequency) 
representation of a signal is obtained using digital 
filtering techniques and with the combination of 
down-sampling operations, the time-scale 
representation is obtained in different frequency 
bands. De-noising is accomplished by reconstructing 
the time-scale representation with high frequency 
coefficients omitted according to the desired 
requirement. As an example, consider the level of 
tank no.4 in the example, the time domain 
reconstructions of the signal are illustrated in Fig. 1. 
The left column (called “Approximate”) is the 
remained de-noised signal with different extent of the 
high frequency having been removed, and, the right 
column (called “Detail”) is the corresponding 
removed high frequency signals at different bands. 
The original signal is reconstructed by combining A1 
and D1, and A1 is reconstructed by combining A2 and 
D2, and so on so that Ai is reconstructed by 
combining Ai+1 and Di+1. In dynamic systems, the 
original measured signals consist mainly of low 
frequency components and some high frequency 
measurement noises. As a result, the low frequency 
components are the main constituents of this 
measured signal. In fact, the energy of a signal is 
designated by its absolute value. Consequently, the 
absolute value of Di would be lower compared with 
that of Ai , if the decomposition level is proper. 
Whenever, if the mean of the absolute value of Di has 
an obvious increase at certain decomposition level, as 
illustrated as the hollow points in Fig. 2, the 
decomposition level in correspondence will not be 
appropriate. By this reasoning, the desired filtering 
extent can be determined and will be given in the text 
follows. 
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Fig. 1. DWT reconstruction:  Left column--- 

‘Approximate’; Right column --- ‘Detail’ 
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Fig. 2. Mean of the absolute value of Di 
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Fig. 3. Band-pass spectrum of wavelet function 

 
By Fourier transformation analysis of a wavelet 
function, the decomposition of Di appears as a high-
pass digital filter. After the down-sampling operation, 
the wavelet function filter has a band-pass spectrum 
as shown in Fig. 3. The cut-off frequency, i.e. fcw, of 
each decomposition level can thus be defined as the 
frequency where its magnitude equals 0.707 of the 
pass-band magnitude. In Fig. 3, the cut-off 
frequencies of the high-pass filter at different levels 
of wavelet transformation are designated by fcw1, fcw2, 
fcw3, …, etc., and fs stands for the sampling frequency. 
The exact value of fcw is closely related to the 
sampling frequency fs by the relations listed in Table 
1. In the other words, we adopt DWT to filter the 
measurement signals up to certain DWT level to de-
noise the measurement signals. In the following, 
determination of the proper DWT level to filter the 
measurement signals will be illustrated. 
 

Table 1 Cut-off frequencies of different wavelet 
decomposition level 

 
DWT  level Cut-off frequency (fcw) 
1 0.25*fs 
2 0.125*fs 
3 0.0625*fs 
M  M  
n 0.25*fs*(0.5)n-1 

 
The measurement signals is a dynamic process are 
classified into two types. 
 
Type 1: The first type signals are contained in the 
streams which are independent of the downstream 
processes.   

 
Type 2: The second type is the signals contained in 
some down streams from some dynamic units in the 
process.  
 
For type 1 measurements, the cut-off frequency 
corresponds to each wavelet decomposition level is 
defined at the frequency of suddenly increase of the 
mean value of Di as explained. As an example, in Fig. 
2, the decomposed Di from the forth tank level has an 
obvious increasing at DWT level 4, thus, the third 
level of the DWT will be taken.    
 
For type 2 measurements, the wavelet decomposition 
level is determined by the combination of dynamic 
characteristic and the frequency composition of the 
input signals. It is known that the dynamic behavior 
of a process, especially the inventory one, comes 
mainly from its time constants (designated as τ). The 
frequency response of a dynamic system is usually 
represented by a Bode’s plot that illustrates how the 
process behaves like a low-pass filter that filters out 
the high frequency noises. Moreover, the corner 
frequency of each low-pass filter equals to 1/τ. Thus, 
the significant frequency contain of a measured 
signal from a process depends on the bandwidth of 
the low-pass filter (i.e. process) and the input signals 
to the filter. In practice, the signals in the processes 
are mostly dominated by low frequent signals. By the 
Fourier analysis of a signal we can obtain its 
spectrum over the frequency range of the signals as 
shown in Fig. 4. Owing to normalizing by the total 
energy (i.e. the area under the curve) the amplitudes 
are ranged from 0 to 1.   
 
How the type 2 signals being affected by process can 
be imaged with multiplying the Fourier analysis 
results by the Bode’ plot at each frequency point. 
After the operation, it results the curve in Fig. 5. Due 
to the characteristic of the signal and the process, the 
amplitudes of high frequency region are much 
smaller than those of low frequency region and, thus, 
signals in the high frequency region are viewed as 
noises and must be filtered out. The cut-ff frequency 
is determined at the frequency where its amplitude is 
about certain ratio of the highest amplitude, which is 
set to 1%~5% in the examples. In Fig. 5, amp1 is the 
highest amplitude and amp2 is about 1~5% of amp1. 
Then fc is the determined cut-off frequency and the 
DWT decomposition level is also determined 
according to Table 1.  
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Fig. 4. Fourier analysis of a signal 
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Fig. 5. Frequency response through the process 
 
 

3. INTEGRAL-APPROACH RECONCILIATION 
 
Consider that a linear dynamic system be represented 
by the following differential-algebraic equations 
(DAE):  

dh
=Af

dt
                                  (6) 

Cf=0                                    (7) 
In Eq. (6) and Eq. (7), h is the vector of state 
variables, f is the vector of non-state variables, A and 
C are constant matrices from the algebraic part of the 
DAE. By integrating Eq. (6) and Eq. (7) between 
some time t1 and t2, we can get the following 
algebraic Equations (i.e. Eq. (8) and Eq.(9)). 

t tn ndh
dt=A fdt

t tdt0 0
∫ ∫                               (8) 

tn
C fdt=0

t0
∫                                   (9) 

Notice that, in many reconciliations based on mass or 
energy balances, the variables (i.e. the vector f) in the 
right hand side of the Eq. (6) are independent of the 
state variables. In such cases, formulation of Kalman 
filter estimation will encounter almost the same 
difficulties as those encountered in the problems of 
controlling an integrating process. On the other hand, 
if the variable vector f is formulated in terms of the 
state variables based on some physical and chemical 
laws, the problem solution will encounter difficulties 
of robustness to the modeling error. To avoid these 
difficulties, the data is smoothed by applying the 
DWT first, and the filtered data is used to formulate 
the data reconciliation as follows. 

Let 
dht tn nZ =  dt, Z = f dtt t1 20 0dt

∫ ∫ , and we can 

rearrange the integrations and get the following 
matrix form in Eq. (10). 

ZA -I 2 =0
C 0 Z1

  
     

                             (10) 

It shows that the result is an algebraic constraint. In 
the following, the reconciliation procedure is to 
incorporate the integrating part by Simpson’s rule for 
numerical integration.  
 
The Simpson’s n+1 (n is even) points rule is shown 
in Eq. (11). 

( )
t t -tn s n 0f(t)dt = f +4f +2f +4f +...+4f +f , s=n0 1 2 3 n-1t 3 n0
∫  

            (11) 
Define new variable H and F which represent the 
collections of all measurements of all instruments 
during the integrating time interval t0 to tn. Assuming 
there are k variables (k instruments) in h and m 
variables (m instruments) in f and then H and F 
(shown in Eq. (12)) will contain k*(n+1) and m*(n+1) 
values respectively. 

h f1,t 1,t0 0

h f1,t 1,tn n
,      F=

h fk,t m,t0 0

h fm,tk,t nn

Η =

   
   
   
   
   
   
   
   
   
   

  

M M

M M

M M

                         (12) 

The integration of Eq. (8) and Eq. (9) can be 
represented by H and F as represented easily in Eq. 
(13) and Eq. (14).  

Z =Q * F1 1
                                (13) 

Z Q * H2 2=                                (14) 
Q1 and Q2 are matrices shown as Eq. (15) and Eq. 
(16). In the two equations ‘s’ is the sampling time 
interval. 

    
n 1

1 4 2 4 1
s

Q1 3 1 4 2 4 10

0
+

=

 
 
 
 
 
  

L
O

L

644474448
L     (15) 

n 1
1 0 0 1

Q2
1 0 0 1

0

0

+ 
 −
 

=  
 − 
  

644474448
L

O
L

           (16) 

Finally, we obtain the algebraic constraint 
represented by H and F from the original DAE.  

Q 0A -I F1 =0
C 0 0 Q H2

    
        

                       (17) 

With the equality constraint, the reconciliation 
problem can be solved. Let’s recall the general 
formulation of the steady-state data reconciliation 
problem. There is usually a model to describe the 
measurement variables and constraints to construct 
the reconciliation problem. Then, the data 
reconciliation problem is to estimate the state 
variables by minimizing a least square error problem. 
 
The solution can be obtained using the method of 
Lagrange multipliers and is shown in Eq. (18). 

T T -1x̂=y- A (A A ) Ay∑ ∑                          (18) 
Where, Σ is covariance matrix of the measurement 
variables, y is the measurement, A is the constraint 
matrix, and x̂  is the estimation of the measurement. 
The reconciliation problem is solved by Eq. (18), if 
we have the measurement signals, y, equality 
constraints, i.e. Eq. (17), and covariance matrix Σ. 
 
The wavelet filtering is executed by batch and the 
integral reconciliation executed by moving-window 
within each batch as shown in Fig. 6. The length of 
the batch measurement collection must be long 



 

enough in order to have temporal redundancy for 
reconciliation.  As the moving-windows goes on, 
repeated reconciled variables will be obtained at each 
of the time instants. The final reconciled variables 
are taken as the average of the repeated reconciled 
variables at each time instant.  
 

 

Wavelet filtering : By batch

Integral approach : By moving window  
Fig. 6. Batch-like filtering and moving-window 

reconciliation 
  

The length of the moving window is equal to the 
length of integration points. Assuming there are n+1 
integration sampling points (from t0 to tn) and b 
sampling points in a batch of wavelet filtering 
(b>n+1). 

 
 

4. EXAMPLE 
 
A four-tank system is illustrated as an example. The 
DAE of this example is showed in Eq. (26). There 
are two main flows f5 ,f6 split into two branches 
apiece. The four branches, f1, f2, f3, f4, flow into four 
tanks respectively. Each tank has flow, q1, q2, q3, q4, 
out of it. The flow out of tank 3 is fed into tank 1 and 
the one out of tank 4 is fed into tank 2. Parameters of 
the process are listed in Table 2. By linearization at 
nominal conditions the approximated time constant 
values of each tank are obtained and are listed in 
Table 2. The type 1 variables include f1, f2, f3, f4, f5, 
f6 and the type 2 variables include h1, h2, h3, h4, q1, q2, 
q3, q4. According to those two groups, the DWT 
levels are determined by the previous two methods 
respectively.    In this example, the two main input 
flows, i.e. f5, f6, are set to be constructed of tortuous 
functions with changing frequency. Assuming that 
there are no gross-errors and all the flows and tank 
levels are measured. The batch time interval of the 
wavelet filtering is chosen to 105 points and the 
moving window time interval is chosen to 22 points.  
 
 

d h 1A = - q + q + f1 1 3 1d t
d h 2A = - q + q + f2 2 4 2d t
d h 3A = - q + f3 3 3d t
d h 4A = - q + f4 4 4d t

            (26) 

 
 

 
Table 2 Tank parameters 

 
Symbol State/Parameter Value Dimension 

h0  Nominal levels  [20.4; 20.4; 11.5; 
11.5] cm 

ai  Area of the drain   [3; 3; 2 ;2] cm2 

Ai   Areas of the tanks 1000 cm2 

fi flow into the tank  [0.3; 0.3; 0.3;0.3; 
 0.6; 0.6] cm3/sec 

Ti  Time constants  [68; 68; 76.5; 
76.5] sec 

g  Gravitation constant 981 cm/sec2 

σf 
Standard deviation  
of flow 0.015 cm3/sec 

σh 
Standard deviation  
of level 0.6 cm 

 
 
The DWT decomposition levels of the two different 
type variables are determined according to the 
methods mentioned previously. The mean values of 
the high frequency signal at different DWT level for 
the six variables of type 1 are calculated and the 
determined decomposition levels for those 
measurements are listed in Table 3. The cut-off 
frequencies of different DWT level with sampling 
time equal to 2 seconds in Table 5 and for type 2 
variables, according to this table combined with the 
plot from combination of Fourier analysis of input 
signals and Bode’s plots (time constants of each tank 
are listed in Table 2), the determined decomposition 
levels of this type variables are determined which are 
listed in Table 4. 
 
Furthermore, proposed method is compared with two 
other dynamic reconciliation methods that are 
Kalman filter estimation and an integral approach 
proposed by Bagajewicz and Jiang in 1997. The 
extended Kalman filter algorithms are described in 
appendix. The standard deviations listed in Table 6 
are calculated in order to compare the reconciliation 
results.  
 
The order of the polynomial is chosen to 8, which 
has the best performance, in the integral approach 
method, and the Kalman filtering approach is under 
the condition of no modeling errors. In this example, 
our method has a better performance compared with 
those from Bagajewicz and Jiang’s method and those 
from Kalman filtering approach. Bagajewicz and 
Jiang’s method will have poorer performance as 
more tortuous signal existed unless the order of 
polynomials is creased, which is the main drawback 
of this method. 
 

Table 3 Determined DWT decomposition level for 
type 1 variables  

 
Variable level Variable level 
f1  3 f1 3 
f2 3 f2 3 
f3 3 f3 3 

 



 

 
Table 4 Determined cut-off frequencies for type 2 

variables  
 

Variable Cut-off frequency(Hz) DWT level 
h1, q1  0.0283 3 
h2,q2 0.0283 3 
h3,q3 0.0283 3 
h4,q4 0.0283 3 

 
Table 5 Cut-off frequencies of sampling time equal 

to 2 seconds 
 

Wavelet decomposition level Cut-off frequency (fcw) (Hz) 
1 0.125 
2 0.0625 
3 0.03125 
4 0.015625 
5 0.0078125 

 
Table 6 Standard deviation of three methods in Ex.1  

S.D. Proposed Integral 
approach Kalman filter 

q1 0.058  0.123  0.078  

q2 0.053  0.132  0.080  

q3 0.051  0.108  0.067  

q4 0.059  0.077  0.074  

f1 0.098  0.326  0.212  

f2 0.086  0.440  0.249  

f3 0.097  0.440  0.246  

f4 0.119  0.328  0.212  

f5 0.190  0.650  0.415  

f6 0.173  0.877  0.485  

h1 1.076  3.434  1.552  

h2 1.471  4.296  1.708  

h3 1.210  6.925  1.360  

h4 1.273  3.826  1.450  
 
 

5. CONCLUSIONS 
 
A wavelet enhanced integral approach for the 
dynamic data reconciliation has been presented. 
Before the reconciliation computation, a filtering 
procedure based on DWT is applied to a batch of 
data for de-noising. A well known numerical 
integration via Simpson’s rule is applied to the 
filtered data through a moving window to formulate 
the reconciliation problem. The conciliation problem 
is then solved sequentially to cope with the dynamic 
changes of the process. The results thus obtained 
have been compared with those using the Kalman 
filter estimations and those from the sophisticated 
integration approach. This proposed method 
performs better than others. On the other hand, in 
terms of data smoothing and reconciliation 
formulation, this proposed method is also much 

simpler than the method of Bagajewicz and Jiang 
(1997). 
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