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Abstract: This paper addresses the H∞ state feedback control problem for
discrete-time piecewise affine systems. Our main objective is to derive design
methods that take into account the partition information of the system so as
to alleviate the design conservativeness embedded in conventional approaches
where local Lyapunov functions are required to possess some global characteristics.
To overcome the difficulty arising from non-positive definiteness of Lyapunov
matrices, a transformation is introduced which converts the state feedback control
problem into a bilinear matrix inequality (BMI) problem. We propose iterative
linear matrix inequality (LMI) approaches to solve the BMI problem. Numerical
examples demonstrate the effectiveness of the proposed design.
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1. INTRODUCTION

Piecewise affine (PWA) systems have been receiv-
ing much attention in control community because
a large class of nonlinear systems, such as systems
with relay, saturation and dead zone, can be mod-
elled by PWA systems. Also, smooth nonlinear
systems are approximated by PWA systems in
(Johansson, 2003; Rantzer and Johansson, 2000)
and fuzzy logic (neural) systems are modelled as
PWA systems in (Johansson, 2003; Feng, 2003).
Moreover, in (Heemels et al., 2001), Heemels
et. al. established an equivalence between some
classes of hybrid systems and PWA systems. Thus
PWA systems provide a powerful means for anal-
ysis and design of nonlinear systems.

1 Author for correspondence.

There are a number of results on analysis of PWA
systems, see, e.g. (Johansson, 2003; Rantzer and
Johansson, 2000) for continuous-time systems and
(Ferrari-Trecate et al., 2001; Cuzzola and Morari,
2001; Feng, 2002) for discrete-time systems. There
have been many works on stability analysis of
PWA systems with piecewise quadratic Lyapunov
functions. In (Johansson, 2003; Rantzer and Jo-
hansson, 2000), Johansson and Rantzer gave an
inspiring idea on piecewise quadratic Lyapunov
functions and ways of relaxing conservatism in
analysis of continuous-time PWA systems. The
discrete-time counterpart has been discussed in
(Feng, 2002; Ferrari-Trecate et al., 2001).

Design problems for PWA systems have also re-
ceived much attention. For instance, Alessadri
(Alessandri and Colleta, 2001) presented a Lu-
enberger observer for both discrete-time and
continuous-time systems, where the modes of the



systems are known a priori. Trecate et. al. in
(Ferrari-Trecate et al., 2002a) proposed a state-
smoothing algorithm for hybrid systems based on
moving-horizon estimation (MHE) by exploiting
the equivalence between hybrid systems modelled
in the mixed logic dynamical form and PWA sys-
tems. Rodrigues in (Rodrigues, 2002) provides an
observer-based output feedback controller synthe-
sis approach for continuous-time PWA systems,
where sliding mode is taken into account in detail.
As for discrete-time PWA systems, the authors in
(Cuzzola and Morari, 2001; Mignone et al., 2000)
presented a number of results on controller design.
Feng in (Feng, 2003) proposed a novel method to
synthesize an observer-based output feedback con-
troller based on the so-called separation principle.

In this paper, we investigate the H∞ state feed-
back control problem for PWA systems. This
problem has been considered in (Cuzzola and
Morari, 2001; Mignone et al., 2000; Ferrari-
Trecate et al., 2001; Wang and Feng, 2004; Feng,
2004). In (Feng, 2004), Feng presented an H∞
controller design method for fuzzy dynamic sys-
tems based on a continuous-time PWA model.
And in (Wang and Feng, 2004), Wang and Feng
extended the result for discrete-time Fuzzy sys-
tems. In (Cuzzola and Morari, 2001; Mignone et

al., 2000), Cuzzola et al. considered the H∞ con-
trol problem, generalized H2 problem and robust
H∞ control in (Ferrari-Trecate et al., 2001). In
this paper, we aim to give a less conservative
design, where partition-dependent slack variables
are employed with the aid of S-procedure. In
particular, required properties of Lyapunov func-
tion for each partition are only to be satisfied
locally. However, since the Lyapunov matrices are
no longer required to be positive definite, the
standard Schur complement cannot be applied to
convert the design problem into an LMI or even a
BMI one. In this paper, by introducing a proper
transformation, the design problem is converted
to a BMI problem. Iterative algorithms are then
proposed to solve the BMI problem.

This paper is organized as follows. In Section 2, we
give the PWA system model under investigation
and some preliminaries. In Sections 3 and 4, we
provide new design methods for the H∞ state
feedback controller design. Finally, we draw some
conclusions in the last section.

For convenience, we introduce the following no-
tations. A > 0 means that A is positive definite.
A ≥ 0 means A is nonnegative definite. A º 0 im-
plies that A is copositive. Due to space limitation,
we omit some proofs.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the following discrete-time PWA sys-
tems:

xt+1 = Aixt +Biut + Eiw + ai

zt = Cixt +Diut +Giw

for xt ∈ Si, i ∈ I
(1)

where {Si = {xt|Fixt + fi ≥ 0}}i∈I ⊆ Rn de-
notes a set of polyhedral partitions/subspaces of
the state space, I is the index set of these par-
titions/subspaces. x ∈ Rn is the system state.
u ∈ Rm is the controlled input vector, w ∈ Rl

is the noise and z ∈ Rr is the output vector.
We assume m ≤ n. All the matrices mentioned
in this paper are appropriately dimensioned. Let
Ω represent possible index pairs of transitions:
Ω = {i, j|xt ∈ Si, xt+1 ∈ Sj , i, j ∈ I}.

For simplicity of presentation, we do not consider
PWA systems with affine term, i.e. we assume
that ai ≡ 0 and fi ≡ 0. However, the proposed
approach can be extended to the general PWA
systems with affine term by a suitable transfor-
mation (Feng, 2002).

Consider the following state feedback controller:

ut = Kixt, xt ∈ Si, i ∈ I (2)

where Ki is the state feedback gain of the i-th
partition which is to be determined.

Thus the closed-loop system (1) and the controller
(2) is given by

xt+1 = Āixt + Eiw

zt = C̄ixt +Giw
for xt ∈ Si, i ∈ I (3)

where Āi = Ai +BiKi and C̄i = Ci +DiKi.

The H∞ state feedback control problem is stated
as follows. Given a prescribed level of disturbance
attenuation γ > 0, design a state feedback con-
troller (2), such that the closed-loop system is
exponentially stable and satisfies

‖ zt ‖
2
l2[0,N ]

< γ2 ‖ wt ‖
2
l2[0,N ]

+v(x0), ∀N ≥ 0 (4)

where v(x0) ≥ 0.

Observe that most of the existing controller de-
sign methods for PWA systems are based on the
stability results from Trecate and Cuzzola et.

al. in (Ferrari-Trecate et al., 2001; Cuzzola and
Morari, 2001; Cuzzola and Morari, 2002), where
piecewise Lyapunov functions are used to analyze
the stability of switched systems. These results
employ different Lyapunov functions for different
partitions and are better than results based on a
common Lyapunov function with global proper-
ties. A less conservative result was suggested by



Feng (Feng, 2002) and Trecate (Ferrari-Trecate et

al., 2002b), where the partition information of the
systems are further employed in the analysis.

Lemma 1. (Feng, 2002; Ferrari-Trecate et al.,
2002b) The system (3) is exponentially stable, if
there exist some (Pi = PT

i , Vi º 0, Uij º 0) such
that

Pi − FT
i ViFi > 0, i ∈ I (5)

ĀT
i PjĀi − Pi + FT

i UijFi < 0, i, j ∈ Ω (6)

Remark 2. A special case of Lemma 1 is to set
Vi ≡ 0. Thus Pi > 0. Usually, this brings con-
venience for the controller design as an LMI ap-
proach may be applied by using the Schur com-
plement. Note that when this condition is not
met, the inequality (6) cannot lead to an LMI
for the control design problem since the Schur
complement is not applicable for the linearization
of (6). In this case, the term ĀT

i PjĀi in (6) is
neither linear nor bilinear. To convert the design
problem to a BMI one, we introduce the following
lemma.

Lemma 3. The inequality (6) in Lemma 1 is sat-
isfied if and only if for some matrices (Pi =
PT

i , Vi º 0, Uij º 0,Υij ,Ψj), the following in-
equality holds for ∀ (i, j) ∈ Ω:
[

−Pi + F
T
i UijFi + Ā

T
i Υij + Υ

T
ijĀi −Υ

T
ij + Ā

T
i Ψj

−Υij + Ψ
T
j Āi Pj −

(

Ψj + Ψ
T
j

)

]

< 0(7)

Proof: (7) =⇒ (6): Multiplying (7) from the

left and the right by ΘT
i =

[

I ĀT
i

0 I

]

and Θi,

respectively, we obtain

[

Ā
T
i PjĀi − Pi + F

T
i UijFi −Υ

T
ij + Ā

T
i Pj − Ā

T
i Ψj

∗ Pj −

(

Ψj + Ψ
T
j

)

]

< 0 (8)

which implies (6).

(6) =⇒ (7): Given Pj that satisfies (6), let Ψj =
1
2 (Pj + I), ΥT

ij = ĀT
i Pj − ĀT

i Ψj . By substituting
them into (8), we have:

[

A
T
i PjAi − Pi + F

T
i UijFi 0

0 −I

]

< 0 (9)

Note that Θi is invertible, so (9) =⇒ (7). Thus we
get the result.

Remark 4. Observe that (7) is a BMI. Further,
the coupling between Lyapunov matrices and sys-
tem matrices is now removed, which provides a
possible way to a less conservative controller de-
sign.

3. LINEAR MATRIX INEQUALITY
APPROACH AND SEQUENTIAL LINEAR
PROGRAMMING MATRIX METHOD

In this section, we consider the H∞ state con-
troller design problem based on an LMI technique.
First, we assume that the Lyapunov matrix Pi

is positive definite. The following lemma is well-
known:

Lemma 5. (Ferrari-Trecate et al., 2001) Given a
prescribed γ > 0, the PWA system (3) is stable
and has an H∞ disturbance attenuation γ if there
exists a solution Pi > 0 such that for ∀ i, j ∈ Ω:

[

Ā
T
i PjĀi − Pi + C̄

T
i C̄i C̄

T
i Gi + Ā

T
i PjEi

∗ ϑij

]

< 0 (10)

where

ϑij = ET
i PjEi +GT

i Gi − γ2I (11)

It is easy to see that (10) is equivalent to the
following inequality:







−Qi QiĀ
T
i QiC̄

T
i 0

ĀiQi −Qj 0 Ei

C̄iQi 0 −I Gi

0 ET
i GT

i −γ2I






< 0 (12)

where Qi = P−1i .

Thus we may simply let Wi = KiQi in (12), and
obtain an LMI approach to the H∞ state feedback
controller design problem, see (Ferrari-Trecate et

al., 2001). However, as noted, the design does not
take into account the partition information and is
likely to be conservative.

In order to obtain a less conservative design, we
may consider Lemma 1. For the case that Vi = 0,
i.e. the Lyapunov matrix is required to be positive
definite, we give a design procedure below by the
projection lemma.

Lemma 6. (Projection Lemma). (Boyd et al., 1994)
Given a symmetric matrix Σ and two matricesM
and N , letM⊥ and N⊥ be the null spaces ofMT

and N T , respectively. There exists some matrix Θ
such that

Σ +MΘTN T +NΘMT < 0 (13)

if and only if

M⊥T
ΣM⊥ < 0; N⊥

T
ΣN⊥ < 0 (14)

Firstly, we give a relaxed result compared with
Lemma 5.

Lemma 7. Given a prescribed γ > 0, the PWA
system (3) is exponentially stable and has the H∞



disturbance attenuation γ if there exists a solution
(Pi > 0,Ki, Uij º 0) such that for ∀ i, j ∈ Ω
[

ĀT
i PjĀi − Pi + FT

i UijFi + C̄T
i C̄i ∗

GT
i C̄i + ET

i PjĀi ϑij

]

< 0 (15)

where ϑij is as in (11).

Applying the Schur complement to (15), we obtain






−Pi + FT
i UijFi ĀT

i Pj C̄T
i 0

PjĀi −Pj 0 PjEi

C̄i 0 −I Gi

0 ET
i Pj GT

i −γ2I






< 0 (16)

(16) can be rewritten as

Σij +NKT
i M

T
ij +MijKiN

T < 0 (17)

where Σij =

[

−Pi + F
T
i UijFi A

T
i Pj C

T
i 0

PjAi −Pj 0 PjEi

Ci 0 −I Gi

0 E
T
i Pj G

T
i −γ

2
I

]

, N =

[

In×n

0n×n

0r×n

0l×n

]

, Mij =

[

0n×m

PjBi

Di

0l×m

]

.

We assume that rank([B′i D′i]) = mi. Thus we
have

N
⊥

=

[

0n×n 0n×r 0n×l

In×n 0n×r 0n×l

0r×n Ir×r 0r×l

0l×n 0l×r Il×l

]

,

M⊥
ij =





In×n 0n×(n+r−mi)
0n×l

0(n+r)×n

[

P
−1
j

0

0 Ir×r

]

[B
′

i D
′

i]
⊥

0(n+r)×l

0l×n 0l×(n+r−mi)
Il×l



(18)

N⊥TΣijN
⊥ =

[

−Pj 0 PjEi

0 −I Gi

E
T
i Pj G

T
i −γ

2
I

]

< 0 (19)

M
⊥T
ij ΣijM

⊥

ij =




−Pi + F
T
i UijFi ∗ ∗

[B
′

i D
′

i]
⊥T

[

Ai

Ci

]

−[B
′

i D
′

i]
⊥T

[

Qj 0
0 I

]

[B
′

i D
′

i]
⊥

∗

0 [E
T
i G

T
i ][B

′

i D
′

i]
⊥

−γ
2
I





(20)

PjQj = I (21)

Remark 8. Consider the system (3). The following
two statements are equivalent:

(1) There exists a solution Pi > 0,Ki satisfying
(15);

(2) There exists a solution Pi > 0, Qi > 0
satisfying (19), (20) and (21).

Thus the state feedback control problem can be
solved by first finding a solution for (19), (20) and
(21). If they are solvable, we can obtain Ki by
substituting them into (15).

Now the problem is how to address the equality
constraint (21). Note that (21) can be weakened to
the following well-known semi-definite program-
ming relaxation:

[

−Pj I

I −Qj

]

≤ 0 (22)

Observe that the condition (21) is equivalent to
trace(PjQj) = n, thus we can solve the constraint
by solving the following optimization problem

min
∑

j∈I

trace(PjQj), subject to (22) (23)

The above problem is not convex since the cost
function in (23) is bilinear. This bilinear prob-
lem has been investigated by many researchers
in static output feedback control for continuous-
time systems. In fact, some efficient computa-
tional algorithms, such as the cone complementar-
ity linearization method (Ghaoui et al., 2001) and
sequential linear programming matrix method
(SLPMM) (Leibfritz, 2001), were proposed. In
this paper, we borrow the main idea of SLPMM
because SLPMM always generates a strictly de-
creasing sequence of the objective function value
which is bounded below by some integer, and thus
it is convergent.

Now we extend the SLPMM to solve the state
feedback control problem and have the following
result.

Algorithm 1. SLPMM Based on Projection

Lemma

Step 1 Obtain an initial set (P 0i , Q0i ) by solving
(19), (20) and(22) for ∀(i, j) ∈ Ω.

Step 2 Given P k
i and Qk

i , solve the following
optimization problem for some Pi > 0, Qi > 0:

min
∑

j∈I

trace(PjQ
k
j + P k

j Qj),

s.t. (19), (20) and (22) for ∀(i, j) ∈ Ω

(24)

Step 3 If
∑

j∈I trace(PjQ
k
j +P k

j Qj−2P k
j Qk

j ) ≤
ε, stop, where ε is a pre-defined sufficient small
positive scalar.

Step 4 Compute α ∈ [0 1] by solving

min
∑

j∈I

trace((1− α)Pj + αP k
j )((1− α)Qj + αQk

j ))

Set P k+1
j = (1 − α)Pj + αP k

j , Qk+1
j = (1 −

α)Qj + αQk
j . k = k + 1. Go to Step 2.

4. BILINEAR MATRIX INEQUALITY
APPROACH

In existing controller, observer and estimator de-
sign methods for discrete-time PWA systems,
Pi > 0, for i ∈ I seems to be a default setting.
But based on the stability theory stated as in
Lemma 1, it is not a necessary condition. A suf-
ficient condition for a proper piecewise quadratic
Lyapunov function V (xt) only requires that V (xt)
be positive in each partition. In this section we
shall do away with the assumption that Pi > 0
with the aid of Lemmas 1 and 3.



Lemma 9. Given a prescribed γ > 0, the PWA
system (3) is exponentially stable and has the H∞
disturbance attenuation γ if there exists a solution
(Pi = PT

i ,Ki, Vi º 0, Uij º 0) such that

Pi − FT
i ViFi > 0, ∀ i ∈ I (25)

and (15) is satisfied for all i, j ∈ Ω.

As mentioned earlier, (15) is neither an LMI nor a
BMI. By applying Lemma 3, we obtain an analysis
result which will lead to an H∞ state feedback
design via BMI techniques.

Theorem 10. Given a prescribed γ > 0, the PWA
system (3) is exponentially stable and has the H∞
disturbance attenuation γ, if there exists a set of
solution (Pi = PT

i ,Υij ,Ψj , Vi º 0, Uij º 0), such
that (25) and following inequality are satisfied for
∀ i, j ∈ Ω:




−I ∗ ∗ ∗

C̄
T

−Pi + F
T
i UijFi + Ā

T
i Υij + Υ

T
ijĀi ∗ ∗

0 −Υij + Ψ
T
j Āi θj ∗

0 G
T
i C̄i + E

T
i PjĀi 0 ϑij



 < 0 (26)

where θj = Pj −
(

Ψj +ΨT
j

)

and ϑij = ET
i PjEi +

GT
i Gi − γ2I.

Note that by defining Ãi =

[

Āi Ei

C̄i Gi

]

, P̃i =

[

Pi 0
0 I

]

and

Ũij =

[

F
T
i UijFi 0

0 (1− γ
2
)I

]

, (15) can be rewritten as

ÃT
i P̃jÃi − P̃i + Ũij < 0 (27)

Thus we can conclude that (27) is equivalent
to the following inequality for some (P̃i =
PT

i ,Υi,Ψij) for ∀ (i, j) ∈ Ω:
[

−P̃i + Ũij + Ã
T
i Υij +Υ

T
ijÃi −Υ

T
ij + Ã

T
i Ψj

−Υij +Ψ
T
j Ãi P̃j −

(

Ψj +Ψ
T
j

)

]

< 0(28)

There are several existing iterative (local) algo-
rithms to BMI problems, such as V-K iterative
algorithm (Goh et al., 1994), path-following al-
gorithm (Hassibi et al., 1999), and method-of-
centers-like algorithm (Kanev et al., 2004) for lo-
cal region, branch and bound algorithm (Beran et

al., 1997) and trust region strategy (J. Thevenet,
2004) for global optimization. We can also apply
the commercial software: PENBMI to solve this
problem (Stingl, 2004). We omit the detail steps
here.

5. EXAMPLES

Example 1. Consider the system with the follow-
ing parameters:

A1 = A3 =

[

1 0.1
−0.5 1

]

, A2 = A4 =

[

1 0.5
−0.1 1

]

,

B1 = B3 =

[

0
1

]

, B2 = B4 =

[

1
0

]

,

E1 = E3 =

[

0.01
0

]

, E2 = E4 =

[

0
0.01

]

,

G1 = G2 = G3 = G4 = 0, C1 = C2 = C3 = C4 =
[

1 0
]

,

D1 = D2 = D3 = D4 = 0.1,

F1 = −F3 =

[

−1 1
−1 −1

]

, F2 = −F4 =

[

−1 1
1 1

]

This example is borrowed from (Feng, 2004) where
an optimal γ = 0.2 was reported. Using the
SLPMM introduced in Section 3, we obtain a
much better optimal γ of 0.0309 than that in
(Feng, 2004). Further, if we use the obtained result
and apply the result in Theorem 10 using the
path-following algorithm (Hassibi et al., 1999), we
can get a better result γ = 0.0300. One set of
possible controller gains are

K1 = K3 =
[

−0.514161 −1.10141
]

,

K2 = K4 =
[

−1.01279 −0.372147
]

We input a white noise with power 0.01. Figure 1
shows the trajectories of z from initial state [0 0]T

and [0.1 0.1]T , respectively.

Example 2. Consider the system with the follow-
ing parameters

A1 = A3 =

[

0.28 0.315
0.63 −0.84

]

, A2 = A4 =

[

0.525 0.77
−0.7 −0.07

]

,

B1 = B3 =

[

1
0

]

, B2 = B4 =

[

1
0

]

,

E1 = E3 =

[

1
0

]

, E2 = E4 =

[

1
0

]

,

G1 = G2 = G3 = G4 = 0, C1 = C2 = C3 = C4 =
[

1 0
]

,

D1 = D2 = D3 = D4 = 0,

F1 = −F3 =

[

1 0
0 1

]

, F2 = −F4 =

[

1 0
0 −1

]

This example is borrowed from (Ferrari-Trecate
et al., 2001). If the SLPMM algorithm in Section
3 is applied to this example, the performance is
significantly improved to γ = 1.37 compared with
the optimal γ = 1.73 given in (Ferrari-Trecate et

al., 2001). The corresponding controller gains are

K1 = K3 =
[

−0.241011 −0.366977
]

K2 = K4 =
[

0.736137 0.123002
]

6. CONCLUSION

In this paper, we provided several improved H∞
state feedback control design methods for discrete-
time PWA systems. Our methods take into consid-
eration of the partition information of the system.



0 10 20 30 40 50 60 70 80 90 100
−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10−3

Time

Va
lue

Controlled Signals x
1

0 50 100 150 200 250 300 350 400 450 500
−5

−4

−3

−2

−1

0

1
x 10−3

Time

Va
lue

Controlled Signals x
1

initial state [0 0]T initial state [0.1 0.1]T

Fig. 1. Output z via the H∞ controller.

The less conservative designs are achieved by ap-
plying S-procedure and partition dependent slack
variables. The examples illustrate the advantages
of our methods.
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