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Abstract: This paper develops a method for analysis of random reference tracking
in feedback systems with saturating actuators. The development is motivated
by the frequency domain approach to linear systems, where the bandwidth and
resonance peak of the sensitivity function are used to predict the quality of step
reference tracking. Similarly, based on the so-called saturating random sensitivity
function, we introduce tracking quality indicators and show that they can be used
to determine both the quality of random reference tracking and the nature of track
loss under actuator saturation. Copyrights c©2005 IFAC
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1. INTRODUCTION

1.1 Motivation

As it is well known, the quality of reference track-
ing in linear systems is determined by the loop
transfer function. In systems with saturating ac-
tuators, this is not the case. Indeed, for example,
consider the SISO feedback system and the refer-
ence signal shown in Figure 1, where the latter is
a realization of a colored noise process with power
spectral density SR(ω) = 6

1+(ω/0.5)6 . The quality

of tracking for several C(s) and P (s), satisfying
C(s)P (s) = 75

s(s+10) , is illustrated in Figure 2. (In

Figure 2(a), the reference and the output signals
practically coincide.) Clearly, the nature of track-
ing errors in each of the three cases is qualitatively
different, which supports the above assertion.

The track loss in systems with saturating actuators
may occur due to a number of different reasons.
These include those that occur in linear systems
plus those due to actuator saturation. To illustrate
these reasons, consider again the system and the
reference signal of Figure 1 and select C(s) and

P (s), which result in different patterns of track
loss but with the same standard deviation of the
tracking error, σe. The results are shown in Figure
3 (for σe = 0.67). As one can see, track loss in
Figures 3 (a)–(c) is due to static unresponsiveness,
dynamic lagging, and oscillatory behavior, respec-
tively. These reasons take place in the purely linear
case as well (see (Eun et al. 2003)). Track loss
in Figures 3 (d)–(g) is due to saturation, namely,
amplitude truncation without controller wind-up,
amplitude truncation with the controller wind-
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Fig. 1. Feedback control system with saturating
actuator and reference signal
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Fig. 2. Tracking of random reference in system of
Figure 1(a)

up, nonlinear lagging, and nonlinear oscillations,
respectively.

The goals of this paper are to analyze what de-
termines the quality of tracking in systems with
saturating actuators and quantify under which
conditions one or another type of track loss takes
place.

0 10 20 30 40 50 60 70 80 90 100

−2

0

2 r(t)
y(t)

(a) C(s) = 4/(s + 10) and P (s) = 6.2/(s + 5)

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

(b) C(s) = 0.4 and P (s) = 0.8125(s+0.1)/s(s+
0.02)

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

(c) C(s) = 0.0112(s+30.533)/s and P (s) = 4/s
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(d) C(s) = 100 and P (s) = 11/(s + 3)(s + 7)
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(e) C(s) = 2/s and P (s) = 8/(s + 10)
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(f) C(s) = 25 and P (s) = 2/s(s + 10)

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

(g) C(s) = 4.126(s + 1.102) and P (s) =
0.355/s2

Fig. 3. Track loss in system of Figure 1(a)

1.2 Approach

In the case of linear systems, the quality of step in-
put tracking is often characterized in the frequency
domain by the Sensitivity (S) function, specifi-
cally, by its d.c. gain, bandwidth, and resonance
peak. Recently, this approach has been extended
to tracking random inputs by introducing the no-
tion of random sensitivity (RS) function (Eun et

al. 2003). In particular, it has been shown, that
the d.c. gain, bandwidth, and resonance peak of
the RS function characterize the quality of ran-
dom reference tracking in linear systems in the
same manner as the S function characterizes the
quality of tracking steps. In the current paper, we
extend this approach to systems with saturating
actuators. This is accomplished by introducing and
analyzing the so-called saturating random sensitiv-
ity (SRS) function. Due to actuator nonlinearity,
the SRS function depends not only on the fre-
quency but also on the “amplitude” of the signals
involved and, therefore, is a function of two inde-
pendent variables. We provide a method for cal-
culating the SRS using a quasi-linearization tech-
nique known as stochastic linearization (Roberts
and Spanos 1990). In (Gökçek et al. 2001), stochas-
tic linearization has been used for analysis and
design of systems with saturating actuators from
the point of view of disturbance rejection. In this
paper, we use it in the framework of reference
tracking.

1.3 Related Literature and Paper Outline

Systems with saturating actuators have been stud-
ied for a long time (see recent monographs (Saberi
dt al. 2000, Hu and Lin 2001, Kapila 2002)). How-
ever, just a few publications have been devoted
to reference tracking. These include (Yakubovich
et al. 1999) where tacking domains have been
investigated, (Saberi dt al. 2000) where asymp-
totic output tracking has been studied, (Goldfarb
and Sirithanapipat 1999) where random reference
tracking by a servo with a PD-controller has been
analyzed, and (Eun et al. 2004a) where the notion
of system type has been extended to feedback con-
trol with saturating actuators. However, no general
methods for analysis of quality of random reference
tracking in systems with saturating actuators ex-
ist. This paper is intended to contribute to this
end.

To accomplish this, Section 2 introduces the SRS
and its characteristics: d.c. gain, bandwidth, reso-
nance frequency and resonance peak. In Section
3, we use these characteristics to define dimen-
sionless tracking quality indicators and diagnostic
flow charts. Finally, in Section 4 the conclusions
are given. Due to space limitations the proofs are
not included here and can be found in (Eun et

al. 2004b).



2. SATURATING RANDOM SENSITIVITY
FUNCTION

2.1 Random Reference Signals

Similar to (Eun et al. 2003), the class of random
reference signals, considered in the work, is defined
as the scaled steady state output of the third
order Butterworth filter driven by a standard white
Gaussian process. The transfer function of this
filter is given by

F (s; Ω) =

√

3

Ω

(

Ω3

s3 + 2Ωs2 + 2Ω2s + Ω3

)

, (1)

where the d.c. gain is selected so that, for all 3-
dB bandwidths Ω, the standard deviation of the
output is 1. Thus, the reference signals considered
in this work are given by

r(t) = σrr(t; Ω), (2)

where r(t; Ω) is the output of (1) and σr is the “am-
plitude” or, more precisely, the standard deviation
of r(t).

Clearly, higher order Butterworth filters can be
considered instead of (1). However, as it turns out,
the results remain quite similar to those obtained
using (1) (see also (Eun et al. 2003)) and, thus,
for the sake of simplicity, we consider band-limited
reference signals r(t) defined by (1) and (2).

2.2 System Model

Consider the system shown in Figure 4 with refer-
ence signal (1), (2) and satα(u) defined by

satα(u) =











α if α < u,

u if − α ≤ u ≤ α,

−α if u < −α.

(3)

Due to the nonlinearity, exact analysis of this
system requires solving the Fokker-Plank equation,
which is possible only in a few special cases.
Therefore, a simplification is necessary. We use for
this purpose the method of stochastic linearization
(Roberts and Spanos 1990). According to this
method, the saturation function is replaced by a
linear function, the slope of which depends on the
standard deviation of the signal at the input of the
saturation. This method is akin to the method of
describing functions and ensures similar accuracy.

Using stochastic linearization, the nonlinear sys-
tem of Figure 4 can be replaced by the quasi-linear

satα(u)C(s)
r e

P (s)
yu+

-

Fig. 4. System with saturating actuator

N(σû)C(s)
r ê

P (s)
ŷû+

-

Fig. 5. Stochastically linearized system

system shown in Figure 5, where the equivalent
gain N(σû) is given by (Gökçek et al. 2001)

N(σû) = erf

(

α√
2σû

)

, (4)

erf(ξ) =
2√
π

∫ ξ

0

exp(−t2) dt. (5)

The system of Figure 5 is quasi-linear since N
depends on the standard deviation of û.

The results reported in this paper are obtained
using the simplified model of Figure 5. However,
the system of Figure 4 is also used – to verify that
the results derived are applicable to the original
nonlinear system as well.

2.3 Definition and Properties of the Saturating

Random Sensitivity Function

If N in Figure 5 were a constant gain equal to 1, the
sensitivity and the random sensitivity functions of
the closed loop system would be given by (Eun et

al. 2003)

S(s) =
1

1 + P (s)C(s)
, (6)

RS(Ω) =
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These functions are extended to the case of the
quasi-linear system of Figure 5 by defining the
saturating random sensitivity (SRS) as follows:

SRS(Ω, σr) =
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As one can see, physically SRS(Ω, σr) repre-
sents the ratio of the standard deviations of the
error signal ê(t) and reference signal r(t), i.e.,
SRS(Ω, σr) = σê/σr.

Asymptotic properties of SRS(Ω, σr) are as fol-
lows:

Theorem 1. Assume that the closed loop system of
Figure 5 is asymptotically stable for all N ∈ (0, 1],
P (s) is strictly proper and C(s) is proper. Then,

(i) for any Ω > 0,

lim
σr→0

SRS(Ω, σr) =
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; (10)

(ii) for any σr > 0,

lim
Ω→∞

SRS(Ω, σr) = 1; (11)
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where N satisfies

N = erf
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Clearly, statement (10) implies that for small refer-
ence signals, SRS(Ω, σr) practically coincides with
RS(Ω). Statement (11) indicates that for large Ω
the functions SRS(Ω, σr), RS(Ω) and S(s) are
practically identical, and no tracking takes place.
Finally, since N ≤ 1, statement (12) shows that
for low frequencies SRS(Ω, σr) is typically larger
than RS(Ω) and, thus, the presence of saturation
impedes tracking.

Figures 6 and 7 illustrate the SRS functions for
all systems of Figures 2 and 3, respectively. As
it will be shown in Section 3, these functions
define the nature of tracking and track loss in the
corresponding systems.

2.4 Shape Characteristics

Although a complete description of SRS(Ω, σr)
requires a two-dimensional surface, a compact (but
incomplete) description can be given in terms of
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Fig. 6. SRS(Ω, σr) for systems of Figure 2.
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Fig. 7. SRS(Ω, σr) for systems of Figure 3.

Table 1. Trackable Domains for systems
of Figure 2

(a) (b) (c)

|TD| ∞ ∞ 1.5

Table 2. Trackable Domains for systems
of Figure 3

(a) (b) (c) (d) (e) (f) (g)

|TD| 3.75 ∞ ∞ 0.53 0.4 ∞ ∞

characteristics, similar to those used to describe
the S(s) and RS(Ω) functions. Namely, introduce

(i) saturating random d.c. gain:

SRdc = lim
Ω→0, σr→0

SRS(Ω, σr), (14)

(ii) saturating random bandwidth:

SRΩBW (σr) = min{Ω |SRS(Ω, σr) = 1/
√

2},
(15)

(iii) saturating random resonance frequency:

SRΩr(σr) = arg max
Ω>0

SRS(Ω, σr), (16)

(iv) saturating random resonance peak:

SRMr(σr) = sup
Ω>0

SRS(Ω, σr). (17)

For the SRS functions of Figures 7 (a) and (d),
SRdc are 0.67 and 0.019, respectively, while for
all others it is 0. Clearly, one might expect that
tracking of even small and slowly changing signals
in the system of Figure 7 (a) is poor, and the track
loss is due to static unresponsiveness.

The SRΩBW for all systems of Figures 2 and 3
are shown in Figures 8 and 9, respectively. In all
cases SRΩBW is monotonically decreasing in σr,
but systems of Figure 2 (c) and Figures 3 (a), (d),
(e) result in SRΩBW with almost infinite roll-off
rate. This phenomenon can be explained using the
notion of Trackable Domain (TD) introduced in
(Eun et al. 2004a). Indeed, it has been shown in
(Eun et al. 2004a) that the set of step inputs that
can be tracked by a system with saturating actu-
ators and its size can be quantified, respectively,
as

TD =

{

r0 ∈ R : |r0| <

∣

∣

∣

∣

1

C0
+ P0

∣

∣

∣

∣

α

}

, (18)

|TD| =

∣

∣

∣

∣

1

C0
+ P0

∣

∣

∣

∣

α, (19)

where r0 is the size of the step and C0 and P0 are
d.c. gains of the controller and plant, respectively.
Trackable domains for all systems of Figures 2 and
3 are given in Tables 1 and 2, respectively. Clearly,
systems of Figure 2 (c) and Figures 3 (a), (d), (e)
have finite trackable domains and, therefore, their
bandwidth must drop to 0 for σr sufficiently large,
no matter how small Ω is.
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Fig. 8. Saturating random bandwidth for systems
of Figure 2.
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Fig. 9. Saturating random bandwidth for systems
of Figure 3.

The SRS(Ω, σr) function and its characteristics
are used in Section 3 to quantify the nature of ran-
dom reference tracking and track loss in systems
with saturating actuators.

2.5 Accuracy of SRS and its Shape Characteristics

The saturating random sensitivity function pro-
vides an estimate, σê, of the steady state tracking
error, σe, in the system of Figure 4 as follows:

σê = σr SRS(Ω, σr). (20)

Unfortunately, the question of accuracy of this esti-
mate has no general answer. In a few special cases,
where σe can be found exactly by solving the cor-
responding Fokker-Planck equation, this accuracy
has been shown to be quite high (well within 10%)
(Roberts and Spanos 1990, Gökçek et al. 2001).
In other cases, the accuracy of this estimate has
been evaluated numerically (Gökçek et al. 2001).
It has been observed that the accuracy is high
for small and large σr (regardless of Ω) and for
large Ω (regardless of σr). For some intermediate
values of Ω and σr, the approximation could be
poor. However, since the four shape characteristics,
i.e., SRdc, SRΩBW (σr), SRΩr(σr), SRMr(σr),
are defined in the domains where the accuracy is
typically high, we use them for tracking quality
analysis in systems with saturating actuators.

3. TRACKING QUALITY INDICATORS AND
DIAGNOSTIC FLOW CHARTS

The tacking quality indicators are introduced as
follows:

I0 =
σr

|TD| , (21)

I1 = SRdc, (22)

I2 =
Ω

SRΩBW (σr)
, (23)

I3 = min

(

Ω

SRΩr(σr)
, SRMr(σr) − 1

)

. (24)

Clearly, I0 quantifies the “size” of the reference
signal vis-a-vis the trackable domain; large I0 im-
plies that amplitude truncation must take place.
Indicator I1 quantifies the level of static respon-
siveness; large I1 implies that responsiveness, even
to small and slow signals, is poor. Indicator I2

quantifies the bandwidth of the reference signal in
units of the closed loop bandwidth; large I2 implies
that dynamic lagging must take place. Finally, I3

characterizes oscillatory properties of the response;
large I3 implies that oscillations must be present.

Although indicators I1–I3 are proper extensions of
the corresponding tracking quality indicators for
linear systems (Eun et al. 2003), they may be large
due to either linear or nonlinear part of the system.
The two cases can be discriminated by the value of
the equivalent gain, N , defined by (9). Specifically
if N is close to 1, the phenomenon is caused by
the linear part of the system, otherwise, it is due
to saturation.

Based on the above discussion, the nature of track-
ing quality and reasons for track loss can be diag-
nosed using the flow charts shown in Figure 10.
Each of them includes a qualitative term “large”.
Based on our experience, an indicator can be
viewed as large if

I0 > 0.4, I1 > 0.1, I2 > 0.4, I3 > 0.2. (25)

Consider, for example, the system of Figure 4 with
C(s) = 5/s, P (s) = 15/(s + 10) and r(t) =
1.5 r(t; 10). The tracking quality indicators for this
system and reference signal are:

I0 = 1, I1 = 0, I2 = 4.705, I3 = 0.078, (26)

while N = 0.47. Thus, using Figure 10 (a) we de-
termine that tracking is poor due to the amplitude
truncation with wind-up . Using Figure 10 (b), we
conclude that there is no loss of tracking due to
unresponsiveness. Using Figure 10 (c), we expect
lagging due to saturation (i.e., nonlinear lagging).
These conclusions are supported by the traces of
y(t) (obtained by simulating the system of Figure
4) shown in Figure 11.

Table 3 presents the tracking quality indicators
and the conclusions as to the nature of tracking
and track loss for all systems considered in Sec-
tion 1.

Remark The diagnostics approach, described above,
leads to qualitatively correct results in the major-
ity of cases analyzed. However, it is not always the
case. Typically, this approach fails when C(s) and
P (s) are such that the usual sensitivity function,
S(s), does not predict the step response well. An



Table 3. Diagnosed quality of tracking in systems of Figures 2 and 3.

Fig. I0 I1 I2 I3 N C(s) pole at s = 0? Track qual. & track loss
2(a) 0 0 0.187 0.017 1 No good
2(b) 0 0 0.791 0.003 0.049 No nonlin. lag.
2(c) 0.667 0 0.089 0.018 0.718 Yes ampl. trunc. with windup
3(a) 0.267 0.668 0.187 0.002 1 No static unresponsiveness
3(b) 0 0 0.807 0 1 No linear lag.
3(c) 0 0 0.977 0.756 1 Yes linear osc.
3(d) 1.873 0.019 0.200 0.001 0.014 No ampl. trunc. without windup
3(e) 1.25 0.0 ∞ 0.02 0.106 Yes ampl. trunc. without windup and nonlin. lag.
3(f) 0 0 1.080 0.002 0.043 No nonlin. lag.
3(g) 0 0 1.025 0.406 0.182 No nonlin. osc.
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Fig. 10. Diagnostic flow charts for analysis of
tracking quality in systems with saturating
actuators

example of this type, where neither linear nor sat-
urating cases are well characterized by their sensi-
tivity functions, can be found in (Eun et al. 2004b).

4. CONCLUSIONS

This paper provides a simple method for analysis
of random reference tracking in systems with sat-
urating actuators. The method mimics the classi-
cal frequency domain approach to step reference
tracking in linear systems. Indeed, it is based on
the indicators, which are similar to bandwidth and

0 1 2 3 4 5 6 7 8 9 10
−4

−2

0

2

4 r(t)
y(t)

sec 

Fig. 11. Tracking r(t) = 1.5 r(t; 10) in system of
Figure 4 with C(s) = 5/s, P (s) = 15/(s + 10)
and α = 1

resonance peak, used in the linear case, and which
allow one to predict the quality of random refer-
ence tracking and nature of track loss in systems
with saturating actuators.

The method developed in this paper offers control
system designers a quick and easy way to predict
system performance without resorting to lengthy
and expensive numerical simulations. In addition,
it illuminates reasons for track loss, which might
be useful for developing improvement measures.
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