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Abstract: Unmanned vehicles endowed with attributes of intelligence are finding
applications in reconnaissance, surveillance, and rescue operations in both military
and civilian domains. We are introducing a methodology to locate a number of
such Unmanned Aerial Vehicles (UAVs) optimally over an urban environment and
identify and track potential ground targets using a particle filtering framework.
The particle filtering framework, when used in conjunction with novel initialization
and adaptation techniques, is a robust, reliable state estimation tool that avoids
many of the drawbacks of classical techniques. Simulation results support the
efficacy of the proposed approach and validate the effectiveness of the algorithmic
developments. Copyright c©2005 IFAC
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1. INTRODUCTION

The term target tracking is often used to refer
to the task of finding/estimating the motion pa-
rameters (mainly the location and direction) of
a moving target in a time sequence of measure-
ments. This task is achievable as long as the target
is within the sensor’s field of view (FOV). If it
happens that the target keeps moving away to
the point it runs off the FOV, the target tracking
task will fail to track the moving target until
the target re-enters the sensor’s FOV. To address
such problems, the sensor is mounted on a moving
platform such as a UAV. We call the new setup
(the sensor plus the UAV) an agent. Thus, we can
start a second task, other than the target tracking
task, to (reactively or proactively) move the sensor
to guarantee that the target stays in view. That
second task is what we call the agent placement
task. The work presented in this paper is of the ac-
tive sensing-based target tracking variety, in which
both tasks discussed above are integrated.

The problem of interest to this paper has been the
focus of attention of some researchers in the past
few decades. Such agent placement approaches as
A-CMOMMT (Parker, 2002), CEP (Hegazy and
Vachtsevanos, 2004), and spreading out (Batalin
and Sukhatme, 2002) have addressed the agent
placement problem for a general region of interest.
The main difference between those approaches
and the approach presented in this paper is that
this paper is mainly interested in surveillance and
reconnaissance in urban environments. Therefore,
the problem is formulated accordingly to better
accommodate the nature of urban environments.

2. AGENT PLACEMENT

2.1 Problem Statement

Introduction We use a formulation of the vari-
ety of Weighted Cooperative Multi-robot Observa-
tion of Multiple Moving Targets (W-CMOMMT)



Fig. 1. A possible view from a mini-UAV hovering
over a street intersection.

Fig. 2. Inserting excessive observation points.

(Werger and Mataric, 2001) since it captures the
multiple-observer-multiple-target scenario with tar-
get prioritization. W-CMOMMT can be shown to
be NP-hard (Hegazy and Vachtsevanos, 2004).

In this paper, the choice is made to limit the
observation points (OPs) to street intersections.
The rationale behind this choice is illustrated in
Figure 1, which shows a possible view from a mini-
UAV hovering over a street intersection. As evi-
dent from the picture, the agent can easily observe
all the moving vehicles on the street as well as the
building surfaces all the way to the next street
intersection. All street segments around an agent
can be visually observed simultaneously using ei-
ther multiple cameras or a single panoramic cam-
era. Thus, the region of interest (ROI) is modelled
as a graph G = (V , E), where V is a set of vertices;
each vertex vi represents an OP, and E is a set of
edges; each edge ei represents a street segment.
Starting with a street map, G can be created by
placing vertices at the street intersections. Extra
OPs can be inserted as needed. For example, when
a street segment is too long to be covered by
a single agent’s FOV, one or more OPs can be
inserted along the segment to split it into two or
more smaller segments. This idea is illustrated in
Figure 2.

Problem Formulation Given:

• G = (V , E): a graph representing the ROI,
• R: a team of m agents that are located on

U ⊆ V and have observation sensors with
a FOV that can cover the longest street
segment represented in G ,

• O (t): a set of n targets, such that, at time t,
target oj (t) is located on some edge ek ∈ E ,
and

• U: a vector of utility values such that uj

reflects the utility value gained by observing
oj .

Define an m×n Boolean matrix Γ (t), where γij (t)
is equal to 1 if and only if oj is located on an edge
that is incident to the vertex where ri is located.

The goal is to provide a dynamic agent placement
policy to maximize the normalized global utility
function

G =

T∑
t=0

n∑
j=1

uj

∨m
i=1 γij (t)

T
n∑

j=1

uj

, (1)

where
∨

is the logical disjunction operator, and
T is the time interval during which the tracking
mission is carried out.

2.2 Approach

Coarse Motion Model A target currently residing
on an edge e connecting the vertices v1 and v2

may stay on the same edge e or move to any
other edge incident to v1 or v2. Target transitions
among street segments follow a stochastic model
described by an M th-order Markov chain, which
can be parsimoniously represented using the gen-
eralized mixture transition distribution (GMTD)
model (Berchtold and Raftery, 2002) as

X(t) =
M∑

i=1

λiQiX(t− i), (2)

where λi’s add up to 1, X(t) is a vector represent-
ing the probability distribution of target location
over E at time t, Qi is the i-step transition matrix.

Agents can use the model to predict the target
locations at future time instant h as a probability
distribution using

X̂j (t + h) =
M∑

i=1

λiQiX̂j (t + h− i) , (3)

where X̂j is the best estimate of the target lo-
cation as a probability distribution. The lags
X̂j (t + h− i) are obtained in the light of the
output of the target tracking task.

Distributed Algorithm Every sampling period t,
each agent ri broadcasts its location vi (t) ∈ V ,
the set of locally observed targets, and their loca-
tions. Each agent then builds a weighted version of
the graph H = (V , E , w), where w : E → R can be



described by probable edge outcomes for a future
time horizon H, which we define as

w (e,H) =
∑

oj∈O

uj

(
H∑

h=1

vh

(
X̂j (t + h) ·Ye

))
(4)

where vh describes the contribution of the future
prediction at time t+h to the placement decision
(vh’s add up to 1), and Yc is a binary vector with
all zeros and a one at the location correspond-
ing to e. Equation 4 sums up the probability ×
utility quantities over all observed targets over a
future horizon H. Note that since targets change
their locations over time, the edge weights w are
time-dependent, and so is H . However, the time-
dependence notation is left out for clarity.

The algorithm attempts to maximize the global
utility defined in Equation 1 by searching for a
set of OPs U ⊆ V that maximizes the coverage at
each time step, which can be defined as

g =
∑
e∈E

adjU (e) w (e), (5)

where adjU : E → {0, 1}, such that adjU (e) is 1
if and only if e has at least one end in U. This
is known as the max vertex cover problem, which
is an NP-hard problem (Han et al., 2002). Con-
sequently, we are only interested in approximate
solutions.

An iterative greedy algorithm (Hochbaum, 1995),
provides a performance guarantee of 1−e−1 of the
that obtained by an optimal policy 1 . Each itera-
tion of the algorithm starts by assigning weights to
the vertices such that the weight of v is the sum of
the weights of all incident edges. Then, it picks the
vertex vmax with the maximum weight and adds
it to the cover set. Finally, vmax and the incident
edges are removed. The process is repeated in the
next iterations until m vertices are obtained.

The algorithm can be decentralized by dividing
the set of vertices V into m disjoint subsets; each
agent ri is assigned a subset Vi. Each agent ri

computes the weights of each vertex v ∈ V i as
described above. ri broadcasts the pair (v̂i, ŵi)
containing the best local candidate v̂i and its cor-
responding weight ŵi. ri waits on similar broad-
cast messages from other agents. The global best
candidate v̂ is determined and added to the so-
lution set. Then, All edges incident to v̂ are re-
moved. If v̂ ∈ Vi, the agent removes that vertex
from Vi. Thus the distributed greedy algorithm
entails sending O (m) messages and guarantees
a solution that is at least 1 − e−1 ≈ 63% of
the optimal solution. Figure 3 shows a pseudo-
code representation of the distributed greedy al-
gorithm. A clock symbol “�” placed next to a

1 e here refers to the natural logarithm base (≈ 2.7183).

0. Initialize L = φ.
1. For each local vertex v ∈ V i, compute vertex

weight w (v) =
∑

adj{v}(e)=1

w (e).

2. Pick the vertex v̂i with the maximum weight
ŵi = w (v̂i) (if exists).

3. Broadcast the pair (v̂i, ŵi) (if exists, otherwise
send a NULL message).

� 4. Wait on a message from each agent rj contain-
ing the pair (v̂j , ŵj).

5. Choose (v̂ , ŵ) as the pair with the highest ŵ .
6. Remove each edge e (if exists) that satisfies

both adj{v̂} (e) = 1 and adj{Vi} (e) = 1.

7. Add v̂ to the solution set L.
8. If v̂ ∈ Vi , remove v from Vi .

9. If
∣∣L∣∣ = m, end.

10. Goto Step 1.

Fig. 3. Pseudo-code representation of the distrib-
uted greedy algorithm.

step number indicates that a timeout is used to
avoid waiting indefinitely for a message from a
failed agent.

3. VIDEO TARGET TRACKING

Each agent is equipped with video cameras that
deliver videos of street segments it is currently
observing. Those videos need to be processed and
important targets are to be tracked. Particle filters
(PFs) have recently been successful in tracking
mobile targets in video (Perez et al., 2004), (Perez
et al., 2002). Information such as size, color, and
motion characteristics of targets, is known a pri-
ori. This information is used to initialize the PF in
the first few frames. Thereafter, using a dynamic
model, the state of each particle is updated as the
video progresses. At each step, color and motion
data is collected for each particle to determine
which particles have a high probability of correctly
tracking the target. On the next iteration, parti-
cles are drawn according to this probability. Thus,
successful particles “survive”, while the other par-
ticles “die.”

3.1 Particle Filtering in a Bayesian Framework

The objective of Bayesian state estimation is to
estimate the posterior pdf p (xk|z1:k) of a state
xk based on all previous measurements z1:k. This
pdf can be determined in two steps: prediction
and update. In the prediction step, the state
update model is used to determine the prior
pdf p (xk|xk−1). If a first-order Markov model is
assumed, then the prior is given as

p (xk|z1:k−1) =∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1. (6)



After the measurement, zk is made, the prior is
updated using Bayes’ rule:

p (xk|z1:k) =
p (xk|zk) p (xk|z1:k−1)

p (zk|z1:k−1)
(7)

Generally, the above equations cannot be deter-
mined analytically. A well-known exception is the
Kalman filter, which can handle linear systems
with Gaussian distributions. PFs are one way to
estimate the above equations for nonlinear, non-
Gaussian processes.

A PF iteratively approximates the posterior pdf
as a set

Sk =
{
〈x(i)

k , w
(i)
k 〉

∣∣i = 1, ..., n
}

, (8)

where x(i)
k is a point in the state space, and w

(i)
k

is the weight associated with this point. w
(i)
k ’s are

non-negative and sum to unity. At each iteration,
the particles are updated using the system dynam-
ics and sampling from p

(
x(i)

k ,x(i)
k−1

)
.

Measurements are then taken at each particle and
the weights are updated 2 using

w
(i)
k ∝ w

(i)
k−1p

(
zk|x(i)

k

)
. (9)

The posterior pdf estimated using particle filter-
ing converges to the actual pdf as the number
of particles increases (Arulampalam and Maskell,
2002).

3.2 Tracking using Particle Filtering

Initialization In much of the previous work (Perez
et al., 2004), (Perez et al., 2002), the filter is ini-
tialized by manually selecting a region of interest
in one of the early frames of a video sequence.
Since the PF is used on an autonomous vehicle,
an automatic initialization routine is developed,
where the prior knowledge of the targets’ color,
motion, and size, is used. First, two adjacent
frames are selected and sent through a brick wall
chromatic filter such that only pixels that are near
the color of the target are kept. The filtered frames
are subtracted pixel by pixel to gain motion infor-
mation. The remaining regions in this difference
image are grouped. Particles are assigned to the
regions based on size; regions with a sizes close
to the target size are assigned more particles than
others.

Fine Motion Model A motion model similar to
(Perez et al., 2004) is used. This model describes
the target motion at a finer scale than the one used

2 If the particles are resampled at each iteration, the
previous weights may be neglected.

for the agent placement. Although, the model
assumes that targets move smoothly from one
frame to the next, a term is included to allow
the model to “lean” towards motion regions. This
accounts for instances where the filter loses lock.
The model is described as

p (xk) = βRW N
(
xk−1, σ

2
)

+ (1− βRW )N
(
yk, σ2

y

)
, (10)

where 0 < βRW < 1 is an adaptable term to allow
the random-walk portion to become a contributor
to the model, xk is the state estimate at time k,
N

(
x, σ2

)
is a Gaussian distribution with mean x

and variance σ2, yk is a region where motion is
detected, and σ2

y is the associated variance.

Measurements After each particle is updated us-
ing Equation 10, color and motion measurements
are taken. The color data is collected in a man-
ner similar to (Perez et al., 2002). A histogram
is populated using only pixels whose saturation
and value (in the HSV sense) are above certain
thresholds. The histogram is compared to a refer-
ence histogram, which is created using the prior
color information. The comparison is done by mul-
tiplying the reference histogram by the particle
histogram bin by bin. A distance measurement
DC (h,hr) is then defined as a function of the
product

DC (h,hr) =

(
1−

B∑

i=1

√
hihi,r

) 1
2

. (11)

DC (h,hr) is then used to determine the color
model

p
(
yC

∣∣x)
= exp

(
−DC (h,hr)

σ2
C

)
, (12)

where σ2
C is an adaptable term that determines

how “spread” p
(
yC

∣∣x)
is.

Motion data is collected at each particle by sub-
tracting the pixel values (in the HSV sense) minus
the corresponding values from the previous frame.
The difference is summed and normalized by the
area. This sum is finally used to determine a
motion distance

DM (x) =
(

1− M

A

) 1
2

, (13)

where M is the sum of the difference pixels within
the particle, and A is the area of the particle.
DM (x) is used to determine the motion measure-
ment model

p
(
yM |x) ∝ exp

(
−DM (x)

σ2
M

)
, (14)

where σ2
M is analogous to σ2

C .



It is assumed that the color measurements are in-
dependent from their motion counterparts. There-
fore, the total measurement model may be fac-
tored as

p (y|x) = p
(
yC |x)λC

p
(
yM |x)λM

, (15)

where λC,M are adaptable terms that are adjusted
throughout the filtering process.

Adaptation The iterative nature of the PF allows
for various parameters to be updated through-
out the filtering process. (Kwok et al., 2003) and
(Fox, 2003) have shown that the number of parti-
cles may be updated during the filtering process in
order to increase efficiency. In this case, the num-
ber of particles as well as model and measurement
parameters are automatically adjusted. For exam-
ple, when a target is in a cluttered environment,
it is advantageous for the motion measurements
to make a larger contribution to the measurement
model and to allow the state update model to lean
more towards regions of high motion. The adapta-
tion is determined by examining the goodness of
the“lock” that the filter had on the target, which
can be measured using (1) the weights that would
be obtained if only color data was collected and
(2) the spatial dispersion of the best particles. In a
frame with a good lock, the standard deviation of
the color weights and the maximum color weight
are both higher than in frames with a poor lock.

Confidence Level Determination In order to use
the PF as part of a decision support tool, it
is essential to know how well the targets are
being tracked. This can be accomplished using
a neural network (NN), which takes data from
the filter such as the maximum particle weight,
standard deviation of particle weight, the spatial
dispersion of the best particles, and the number
of particles, and outputs a confidence level as a
discrete value. In our case, 4 confidence levels are
used. A confidence level of 1 corresponds to having
a poor lock on the target where none of the top
ten particles are on the target. A confidence level
of four corresponds to having a strong lock on
the target where all of the ten best particles are
on the target. The NN was trained off-line using
data collected while running a PF and manually
assigning confidence levels.

4. PERFORMANCE EVALUATION

The integrated approach is evaluated on an urban
zone whose street map is similar to the one shown
in Figure 2. A first-order Markov chain is defined
to determine how targets move from a street
segment to another within the urban zone. As an
example of how a single target is tracked on a
street segment, a PF is used to track a soldier as he

manoeuvered on a street segment form an urban
environment 3 . Frames are grabbed from a movie
at a rate of 30 Hz. The results of the integrated
approach are shown in Figure 4

Figure 4(a) shows the simulation results of apply-
ing different algorithms to the scenario described
above. In addition to the predictive greedy algo-
rithm introduced above, a random dynamic policy
and a fixed policy are tested. A nonpredictive
version of the greedy algorithm is also tested,
where the weight of an edge is computed simply
by adding the utility values of the targets without
predicting future target locations. It is clear that
the predictive iterative greedy algorithm exhibits
the best performance among all of the algorithms
under evaluation. The conclusions to be drawn
from the figure confirm two intuitions. First, care-
fully designed policies, such as the distributed
greedy algorithms, significantly outperform sim-
ple random and fixed policies. Second, a nonpre-
dictive policy, where agents base their placement
decisions on current target locations only, is out-
performed by a predictive policy.

Figure 4(b) shows the initialization of the PF
given the prior knowledge about the soldier men-
tioned above. Sixty particles (shown as boxes)
are assigned, and 51 of them are placed on the
target. It is noteworthy that the filter is initialized
properly even when the target is camouflaged.
Figure 4(c) shows 6 sample frames of tracking the
soldier. The box represents the weighted average
of the ten best particles. The set of “lights” in the
upper left corner of each frame are used to indicate
the output of the NN. If the lowest “light” is
“illuminated,” the NN has output the lowest con-
fidence level. If the second lowest is illuminated,
the NN has output the second lowest confidence
level. If the middle two are illuminated, the NN
has output the second highest confidence level. If
the top three are illuminated, the NN has output
the highest confidence level.

5. CONCLUSION

This paper introduces an integrated approach to
reconnaissance and surveillance in urban envi-
ronments. The approach relies on a multi-level
target motion model and entails algorithms for
autonomous dynamic UAV placement and visual
target tracking. Algorithms are developed and
evaluated using urban warfare scenarios. Exper-
imental results reveal the effectiveness of the ap-
proach and its applicability to real-life scenarios.
Therefore, this paper contributes (1) an integrated
approach to UAV placement and target tracking

3 McKenna Military Operations in Urban Training
(MOUT) site at Fort Benning.



(a) Performance of different agent placement
policies as the target-to-agent ratio increases.
(PIG: Predictive iterative greedy, NIG: Nonpre-
dictive iterative greedy.)

(b) Automatic particle initialization.

(c) Tracking a single target in an urban environment.

Fig. 4. Results of applying the integrated ap-
proach in an urban environment.

for urban reconnaissance and surveillance, (2) a
distributed UAV placement algorithm for target
tracking applications and (3) a particle filter-
based target tracking algorithm.
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