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Abstract: In this paper we propose a saturated nonlinear PID regulator for solving
the problem of global regulation in robot manipulators with bounded torques.
An approach based on interconnected passive systems is used for analyzing the
global asymptotic stability. To this end, we use a passivity theorem which is an
adaptation of a passivity theorem given in (Khalil, 1996). Such a theorem deals
with asymptotic stability of the equilibrium of an unforced interconnected system
in which the feedforward system is state strictly passive and the feedback system
is passive and equilibrium–state observable. Copyright c©2005 IFAC.
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1. INTRODUCTION

The Saturation phenomenon in robot control sys-
tems is present when the actuators are driven by
sufficiently large control signals. If this physical
constraint is not considered in the controller de-
sign, it may lead to a lack of stability guaran-
tee. Some works have been reported to solve this
problem, (Kelly, and Santibañez, 1996; Colbaugh,
et al., 1997a; Colbaugh, et al., 1997b; Loria, et
al., 1997; Santibañez, and Kelly, 1997; Santibañez,
and Kelly, 1998b; Zergeroglu, et al., 2000). On
the other hand, some global nonlinear PID reg-
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ulators, which are based on Lyapunov and passiv-
ity theory, has been reported in (Arimoto, 1995;
Kelly, 1998; Santibañez, and Kelly, 1998a; Meza
and Santibañez, 1999) however, they do not take
into account the effects of actuators saturation.
Recently, two saturated PID controllers have been
reported: a semiglobal saturated linear PID con-
trol (Alvarez, et al., 2003) and a global saturated
nonlinear PID control (Gorez, 1999). In this paper
we introduce a new global saturated nonlinear
PID controller, which has a simpler structure than
that presented in (Gorez, 1999). It is demon-
strated that the proposed saturated nonlinear PID
regulator, can be considered as a passivity based
regulator that allows to see the closed loop sys-



tem as a feedback connection between two passive
systems. With the end of proving the asymptotic
stability of the proposed controller, we present
a passivity theorem which is an adaptation, for
asymptotic stability purposes, of a passivity theo-
rem given in (Khalil, 1996). Such a theorem deals
with the asymptotic stability of the equilibrium of
an unforced interconnected system in which the
feedforward system is state strictly passive, and
the feedback system is passive and observable in
the equilibrium–state. Throughout this paper, we
use the notation λm{A} and λM{A} to indicate
the smallest and largest eigenvalues, respectively,
of a symmetric positive definite bounded matrix
A(x), for any x ∈ IRn. The norm of a vector x

is defined as ‖x‖ =
√

xT x and that of a matrix
A is defined as the corresponding induced norm
‖A‖ =

√
λM{ATA}. Ln

2 and Ln
2e denote the space

of n–dimensional square integrable functions and
its extension, respectively.

2. DYNAMICS OF RIGID ROBOTS AND
CONTROL PROBLEM FORMULATION

The dynamics of a serial n-link rigid robot, includ-
ing the effect of viscous friction, can be written as
(Spong, 1989):

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fvq̇ = τ (1)

where q is the n×1 vector of joint displacements,
q̇ is the n × 1 vector of joint velocities, τ is
the n × 1 vector of applied torques, M(q) is the
n × n symmetric positive definite manipulator
inertia matrix, C(q, q̇) is the n × n matrix of
centripetal and Coriolis torques, Fv is the n × n
diagonal matrix of viscous friction coefficients fvi

for i = 1, 2, . . . , n, and g(q) is the n× 1 vector of
gravitational torques obtained as the gradient of
the robot potential energy U(q), i.e.

g(q) =
∂U(q)
∂q

. (2)

We assume that the links are jointed together with
revolute joints.

2.1 Properties of the Robot Dynamics

Three important properties of dynamics (1) are
the following:

Property 1. (Koditschek, 1984). The matrix
C(q, q̇) and the time derivative Ṁ(q) of the
inertia matrix satisfy:

q̇T

[
1
2
Ṁ(q) − C(q, q̇)

]
q̇ = 0 ∀ q, q̇ ∈ IRn.

Furthermore there exists a positive constant kc1

such that for all x, y, z∈ IRn it has

‖c(x,y)z‖ ≤ kc1 ‖y‖ ‖z‖.

Property 2. (Craig, 1988). The gravitational
torque vector g(q) is bounded for all q ∈ IRn. This
means that there exist finite constants ḡi ≥ 0 such
that

sup
q∈IRn

|gi(q)| ≤ ḡi i = 1, · · · , n. (3)

where gi(q) stands for the elements of g(q).
Equivalently, there exists a constant k′ such that

‖g(q)‖ ≤ k′ for all q ∈ IRn.

Furthermore there exists a positive constant kg

such that

‖g(x) − g(y)‖ ≤ kg‖x − y‖.
for all x,y ∈ IRn.

2.2 Problem Formulation

Consider the robot dynamic model (1). Assume
that each joint actuator is able to supply a known
maximum torque τmax

i so that:

|τi| ≤ τmax
i , i = 1, · · · , n (4)

where τi stands for the i–entry of vector τ . We
also assume that the maximum torque τmax

i of
each actuator satisfies the following condition

τmax
i > ḡi, (5)

where ḡi was defined in Property 2. This assump-
tion means that the robot actuators are able to
supply torques in order to hold the robot at rest
for all desired joint position qd ∈ IRn.

The control problem is to design a controller to
compute the torque τ ∈ IRn applied to the joints,
which satisfies the constraints (4), such that, the
robot joint displacements q tend asymptotically
toward the constant desired joint displacements
qd.

3. PASSIVITY DEFINITIONS

Consider dynamical systems represented by

ẋ = f(x,u) (6)

y = h(x,u) (7)

where u ∈ IRn, y ∈ IRn, x ∈ IRm, f(x∗,0) = 0,
h(x∗,0) = 0, and x∗ is the equilibrium point
of (6). Moreover f , h are supposed sufficiently
smooth such that the system is well–defined, i.e.,



∀ u ∈ Ln
2e and x(0) ∈ IRm we have that the

solution x(·) is unique and y ∈ Ln
2e. The following

definitions 1 and 2, have been adapted (for non–
zero equilibrium) from (Khalil, 1996).

Definition 1. The system (6)–(7) is said to be
passive if there exists a continuously differentiable
positive semidefinite function V (x − x∗) (called
the storage function) such that

uT y ≥ V̇ (x − x∗) + ε‖u‖2 + δ‖y‖2 (8)

+ ρψ(x − x∗)

where ε, δ, and ρ are nonnegative constants, and
ψ(x−x∗) : IRm → IR is a positive definite function
of x−x∗. The term ρψ(x−x∗) is called the state
dissipation rate. Furthermore, the system is said
to be: lossless if (8) is satisfied with equality and
ε = δ = ρ = 0; that is, uT y = V̇ (x − x∗); input
strictly passive if ε > 0 and δ = ρ = 0; output
strictly passive if δ > 0 and ε = ρ = 0; state
strictly passive if ρ > 0 and ε = δ = 0. If more
than one of the constants ε, δ, ρ are positive we
combine names.

Definition 2. The system (6)–(7) is said to be
equilibrium–state observable if u(t) ≡ 0 and y(t) ≡
0 ⇒ x(t) ≡ x∗. Equivalently, no solutions of
ẋ = f(x,0) can stay identically in S = {x ∈ IRm :
h(x,0) = 0}, other than the solution x(t) ≡ x∗.

Definition 3. (Kelly, 1998). F(m, ε,x) with 1 ≥
m > 0, ε > 0 and x ∈ IRn denotes the set of
all continuous differentiable increasing functions
f(x) = [ f(x1) f(x2) · · · f(xn) ]T such that

• |x| ≥ |f(x)| ≥ m|x|, ∀x ∈ IR : |x| < ε
• ε ≥ |f(x)| ≥ mε, ∀x ∈ IR : |x| ≥ ε

• 1 ≥ df(x)
dx ≥ 0, ∀x ∈ IR

Definition 4. The hard saturation function
SAT(x; k) ∈ IRn is defined by

SAT(x; k) =




SAT(x1; k1)
SAT(x2; k2)

...
SAT(xn; kn)


 , x =



x1

x2
...
xn


 ,

k = [ k1 k2 . . . kn ]T , where ki is the i–th satura-
tion limit, and

SAT(xi; ki) =




xi if |xi| ≤ ki

ki if xi > ki

−ki if xi < −ki

for i = 1, 2, . . . n.

4. SATURATED NONLINEAR PID GLOBAL
REGULATOR

In this section we present a new saturated non-
linear PID controller to solve the set-point con-
trol problem of robot manipulators with actuator
torque constraints.

4.1 Main Result

The proposed control law is given by

τ = KpSAT (q̃; τ p) −KvSAT (q̇; τ v) (9)

+ KiSAT(w; τw)

with

w =

t∫
0

(αsat(q̃(σ)) − q̇) dσ

where τ p, τ v and τw are the respective vectors of
saturation limits whose elements satisfy kpi

τpi
≤

τmax
pi

, kvi
τvi

≤ τmax
vi

and kii
τwi

≤ τmax
wi

, with
τmax
i ≥ τmax

pi
+τmax

vi
+τmax

wi
≥ gi, for i = 1, 2, . . . n,

where τmax
pi

, τmax
vi

and τmax
wi

are the allowed maxi-
mum torques, for the proportional, derivative and
integral actions respectively, for the i–th actua-
tor. Kp, Kv and Ki are n × n diagonal positive
definite matrices whose element are kpi

, kvi
, kii

respectively with i = 1, 2...n, q̃ = qd − q denotes
the position error vector, sat(q̃) was defined in
Definition 3, α is a small positive constant suitably
selected. SAT(q̃; τ p) ∈ IRn, SAT(q̇; τ v) ∈ IRn

and SAT(w; τw) ∈ IRn are the proportional,
derivative and integral hard saturation functions
respectively defined in Definition 4. The closed
loop system is shown in the Figure 1.

Fig. 1. Closed loop system

For analysis purpose, the control law (9), can be
written as τ = KpSAT(q̃) + g(qd) + τ ′ where
τ ′ = −KvSAT(q̇) + τ ′′ and τ ′′ = KiSAT(w) −
g(qd) (for avoiding cumbersome notation, hence-
forth, we omit the saturation limit parameters).
This structure of the control law, allow us, to
represent the closed loop system as an unforced
interconnected system, (see Figure 2).
In the next paragraphs we analyze the stability of
the equilibrium of the closed loop system formed
by (9) and (1), which is given by




˙̃q

q̈

ẇ


 =




−q̇

M−1 [KpSAT(q̃) − KvSAT(q̇)+
KiSAT(w) − F v q̇ − C(q, q̇)q̇ − g(q)]

αsat(q̃) − q̇


 (10)



Fig. 2. Feedback System

which is an autonomous differential equation
whose unique equilibrium is:

[
q̃T q̇T wT

]T
=[

0 0 K−1
i g(qd)

]T
, provided that λm{Ki} >

maxiḡi. Such an analysis is carried out using pas-
sivity theory of interconnected systems.

Now, we are in position to introduce some propo-
sitions —whose proofs are omitted due to paper
length— that will allow us to conclude asymptotic
stability of the closed loop system (10).

Proposition 1. The Robot dynamics (1) in
closed-loop with

τ = KpSAT(q̃) −KvSAT(q̇) + g(qd) + τ ′′ (11)

is state strictly passive (see H1 in Figure 2), from
the input torque τ ′′ to the output −ẇ = (q̇ −
α sat(q̃)), it is to say,

(q̇ − α sat(q̃))T τ ′′ ≥ V̇1(q̇, q̃) + ϕ(q̇, q̃), (12)

with the storage function given by

V1(q̇, q̃) =
1
2
q̇TM(q)q̇ − α sat(q̃)TM(q)q̇ + U(q)

−U(qd) +
n∑

i=1

kpi

q̃i∫
0

SAT(ξi) dξi

+g(qd)
T q̃ +

n∑
i=1

α

q̃i∫
0

fvi
sat(ξi) dξi,(13)

with α satisfying

λm{Fv}
λM{M} +

√
nkc1

> α. (14)

4[λm{Kp} − kh2 ]λm{Kv}
λ2

M{Kv} > α. (15)

and λm{Kp} > kh2 with kh2 = 2k′

tanh( 2k′
kg

)
.

The term
∑n

i=1 α
∫ q̃

0
fvisat(ξi) dξi is related with

the dissipated energy by the viscous friction

torque, and α sat(q̃)M(q)q̇ is a cross term which
depends on position error and velocity. The state
dissipation rate is given by:

−ϕ(q̇, q̃) =

−q̇TKvSAT(q̇) − q̇TF v(q̇) − α ˙sat(q̃)TM(q)q̇

−αsat(q̃)TC(q, q̇)T q̇ + αsat(q̃)TKvSAT(q̇)

−αsat(q̃T )[g(qd) − g(q)] − αsat(q̃T )KpSAT(q̃).

�
Proposition 2. The system (see H2 in Figure 2)

ẇ = α sat(q̃) − q̇

z = [−KiSAT(w) + g(qd)]

is passive from the input q̇−α sat(q̃) to the output
z with a radially unbounded non negative storage
function given by

V2(w −Ki
−1g(qd)) =

n∑
i=1

kii

wi∫
kii

−1gi(qd)

[SAT(ξi) − kii
−1gi(qd)] dξi, (16)

which has an unique and global minimum at w =
K−1

i g(qd) –provided that λmin{Ki} > maxi ḡi–.
That means:

T∫
0

(q̇ − α sat(q̃))T z dt ≥ −V2(0) (17)

�
Right a way, we present a theorem that allows
to conclude global asymptotic stability for the
equilibrium of an unforced feedback system, which
is composed by the feedback interconnection of
a state strictly passive system with a passive
system.

Fig. 3. Feedback connection

Theorem 1. Consider the feedback system of
Figure 3 where H1 and H2 are dynamical systems
of the form

ẋi = f i(xi, ei)

yi = hi(xi, ei)



for i = 1, 2, where f i : IRmi ×IRn → IRmi and hi :
IRmi×IRn → IRn are supposed sufficiently smooth
such that the system is well–defined. Also we
assume f1(0, e1) = 0 ⇒ e1 = 0, f2(x2

∗,0) = 0,
h1(0,0) = 0. and h2(x2

∗,0) = 0. The system has
the same number of inputs and outputs. Suppose
the feedback system has a well–defined state–
space model

ẋ = f(x,u) (18)

y = h(x,u)

where

x =
[

x1

x2

]
, u =

[
u1

u2

]
,y =

[
y1

y2

]

f and h are sufficiently smooth, f(x∗,0) = 0, and
h(x∗,0) = 0. Let H1 be a state strictly passive
system with a positive definite storage function
V1(x1) and state dissipation rate ρ1ψ1(x1) and
H2 be a passive and equilibrium–state observ-
able system with a non negative storage function
V2(x2 − x∗

2) with a unique minimum in x2
∗; that

is,

eT
1 y1 ≥ V̇1(x1) + ρ1ψ1(x1)

eT
2 y2 ≥ V̇2(x2 − x∗

2).

Then the equilibrium x∗ of

ẋ = f(x,0) (19)

is asymptotically stable. If V1(x1) and V2(x2−x∗
2)

are radially unbounded then the equilibrium of
(19) will be globally asymptotically stable. ♦
In relation to Theorem 1 and considering that
x1 =

[
q̃T q̇T

]T
, x2 = wT , e2 = y1 =

−ẇ, y2 = z, e1 = τ ′′, V1(x) = V1(q̇, q̃), V2(x2−
x∗

2) = V2(w−Ki
−1g(qd)), u1 = τ ′′′ = 0, u2 = 0.

The closed-loop system equation (10) leads to (18)
(see Figure 2).

By using the Propositions 1, 2 and Theorem 1 we
can prove the following:

Proposition 3. Consider the saturated nonlinear
PID regulator (9) in closed-loop with the robot
dynamics (1). The closed-loop system can be rep-
resented by an interconnected system (see Figure
2), which satisfies the following conditions

• A1. The system in the forward path defines a
state strictly passive mapping with a radially
unbounded positive definite storage function
given by (13), provided that λmin{Kp} > kh2 .

• A2. The system in the feedback path de-
fines an equilibrium state observable passive
mapping with a non negative and radially
unbounded storage function given by (16),
provided that λmin{Ki} > maxi ḡi.

Besides, the equilibrium
[
q̃T q̇T wT

]T
=[

0 0 K−1
i g(qd)

]T ∈ IR3n of the closed-loop system
(10) is globally asymptotically stable. Further-
more the applied torques are bounded by |τi| ≤
τmax
i for i = 1, 2, 3...n. �

5. SIMULATION RESULTS

Using the SIMNON software, we tested our algo-
rithm in the two revolute jointed robot manipu-
lator used in (Campa, et al., 2004). The desired
joint positions were chosen as qd1 = 90◦ and qd2 =
60◦. The gain was tuned as Kp = diag{40, 39}
[Nm/rad], Ki = diag{100, 100} [Nm/rad sec] and
Kv = diag{12, 12} [Nm sec/rad]. The maximum
torques supplied by the actuators are τmax

1 =
15 [Nm] and τmax

2 = 4 [Nm]. The parameters
to be used are: λM{M(q)} = 0.361 [kg m2],
λm{M(q)} = 0.011 [kg m2], kg = 23.94 [kg
m2/sec2], kc1 = 0.049 [kg m2], kh2 = 31.43 [Nm],
λm{Fv} = 0.1713 and α = 0.397 [sec−1].
The Figure 4 shows how the position errors con-
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Fig. 4. Joint position errors for the saturated PID
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verge to zero and the Figure 5 shows the torques
for a period of six second. We can observe from
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Fig. 5. Applied torque using the saturated PID
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Figure 5 that the proposed saturated nonlinear
PID controller yields control inputs |τ1| < τmax

1 =
15 [Nm] and |τ2| < τmax

2 = 4 [Nm].

6. CONCLUSIONS

In this paper we have proposed a saturated non-
linear PID regulator to solve the global regula-
tion problem of robot manipulators with bounded
torques.

By using a passivity based approach, we have
presented a global asymptotic stability analysis
of the closed loop system.

It has been proved that the passive structure of
the rigid robot (Ortega and Spong, 1998) is pre-
served in closed loop with the saturated feedback
of position and velocity from a new input torque
τ ′′ to the output −ẇ = (q̇ − α sat(q̃)). Besides,
the feedback corresponding to the saturated inte-
gral action defines a passive mapping.

Based on the above reasoning we show that the
proposed saturated nonlinear PID regulator in
closed-loop with the robot manipulator, can be
represented as a feedback system composed by two
blocks, in which, the feedforward system is state
strictly passive and the feedback system is passive
and equilibrium–state observable.

Global asymptotic stability of the equilibrium of
the closed-loop system is given in a direct way
using a passivity theorem, which is an adaptation
of a passivity theorem presented in the literature
of passive systems.

It is also guaranteed that, regardless of initial
conditions, the delivered torques evolve inside
prescribed limits.
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